Browse Category: Sensors & Instrumentation > Biosensors

[Search within category]

Hydrogelated Cells for Regenerative Medicine Applications

Researchers at the University of California, Davis have developed a technology that introduces an approach to creating semi-living, non-replicating cellular systems for advanced therapeutic applications.

Flying Driller

UC Berkeley researchers have developed a novel dispersion system for agricultural and environmental payloads, including seeds, soil amendments, miniature soil sensors, and so forth. Dispersive packages are biodegradable and biomimetically designed with similarities to natural seeds. Aerodynamic properties control large-area dispersions, while importantly, tunable gyroscopic properties are programmed for penetration parameters, such as depth, upon impact. Payload distribution can be fine-tuned accounting for local soil moisture and grain-size.

A Multimodal Distributed Sensing Device

Researchers at the University of California, Davis have developed tactile feedback systems that enhance spatial and sensory resolution in sensor arrays through unique signal modulation techniques.

Electro-Plasmonic System and Methods

Scaled neural sensing has been pursued for decades. Physical limitations associated with electrical (electrode-based) field recordings hinder advances in both field of view and spatial resolution. Electrochromic plasmonics (electro-plasmonics) has emerged as a rapidly advancing field combining traditional electrochromic materials with plasmonic nanostructures, including recent demonstrations of electrochromic-loaded plasmonic nanoantennas for optical voltage sensing. Existing optical electrophysiology techniques face critical limitations including poor signal-to-noise ratios due to low photon counts from genetically encoded voltage indicators, which have small cross-sections and low quantum yields. Fluorescent voltage indicators suffer from photobleaching, phototoxicity, and require genetic modifications that limit their clinical applicability. Current electrochromic devices also struggle with limited cycling stability, slow switching times, and restricted color options, and conventional plasmonic sensors exhibit inherently low electric field sensitivity due to high electron densities of metals like gold and silver. Current approaches to electro-plasmonics lack stable, high-contrast optical modulators that can operate at sub-millisecond speeds while maintaining human biocompatibility.

Hybrid Force Radiometric Array with Direct Analog Force-to-RF Conversion

This technology introduces a novel approach for bridging force sensing with wireless communication through direct analog force-to-RF conversion provides lower power consumption and lower costs.

Hydrogel-Based Environmental Sensor Device

A novel sensor device leveraging hydrogel and metallic structures for passive, wireless environmental monitoring.

Centrifugal Microfluidics for Rapid Bacterial Growth and Antibiotic Susceptibility Testing

A novel device leveraging centrifugal microfluidics to accelerate bacterial growth and rapidly determine antibiotic susceptibility.

Oscillating Sensing Circuit

This technology enhances the sensitivity of sensors through exceptional points of degeneracy in various circuit configurations.

Electric Circuits Of Enhanced Sensitivity Based On Exceptional Points Of Degeneracy

A novel circuit design promoting enhanced sensitivity for electromagnetic sensing through exceptional points of degeneracy.

Method Of Microbubble Resonator Fabrication

An innovative technique for creating high-sensitivity Whispering Gallery Mode (WGM) sensors through advanced microbubble resonator fabrication.

Biometric Identification Using Intra Body Communications

An innovative system for biometric identification that utilizes intra-body communication for secure authentication.

Augmented Telemetry from Body-Worn Passive Wireless Sensors

A revolutionary approach to wearable sensors that significantly extends read-out distances and improves reliability without the need for microelectronics.

FRET-Cal Screening Platform for Membrane Signaling Protein Modulators

This invention developed by UC Berkeley researchers provides a novel FRET-Cal Screening Platform to identify positive and negative modulators of membrane signaling proteins. The platform addresses the need for efficient and reliable methods to screen for compounds that can control the activity of these receptors. The technology utilizes a receptor protein with a Förster resonance energy transfer (FRET) pair, composed of a donor and acceptor fluorophore, to screen for candidate compounds. The FRET pair allows for the direct measurement of changes in protein conformation upon binding, providing a highly sensitive and specific method for identifying potential modulators. This platform offers a significant advantage over traditional screening methods by providing a high-throughput, real-time assay for drug discovery and therapeutic development.

Piezoelectric Polymers

The challenge in utilizing α-Linolenic acid (ALA) for medical adhesives has been its poor water solubility and the high hydrophobicity of poly(ALA), typically necessitating elevated temperatures, organic solvents, or complex preparation methods for tissue application. UC Berkeley researchers have developed ALA-based powder and low-viscosity liquid superglues that overcome this limitation by polymerizing and bonding rapidly upon contact with wet tissue. The versatile adhesives are formulated using a monomeric mixture of ALA, sodium lipoate, and an activated ester of lipoic acid. These adhesives demonstrate high flexibility, cell and tissue compatibility, biodegradability, and potential for sustained drug delivery as a small molecule regenerative drug was successfully incorporated and released without altering the adhesive's properties. Additionally, the inherent ionic nature of the adhesives provides high electric conductivity and sensitivity to deformation, enabling their use as a tissue-adherent strain sensor.

Medicinal Adhesive Compositions

Current α-linolenic acid (ALA)-based medical adhesives are limited by ALA's poor water solubility and poly(ALA)'s hydrophobicity, often requiring elevated temperatures, organic solvents, or complex preparations for delivery to biological tissue. This innovation reports on ALA-based powder and low-viscosity liquid superglues that polymerize and bond rapidly upon contact with wet tissue. Developed by UC Berkeley researchers, the versatile adhesives use a monomeric mixture of ALA, sodium lipoate, and an activated ester of lipoic acid, which grants them high flexibility as confirmed by stress-strain measurements on wet adhesives. The adhesive is cell and tissue-compatible, biodegradable, and can sustain drug delivery as a small molecule regenerative drug was successfully incorporated and released without altering its physical or adhesive properties. Furthermore, the inherent ionic nature of the adhesive gives it high electric conductivity and sensitivity to deformation, enabling its use as a tissue-adherent strain sensor.

On-Demand Functionalized Textiles For Drag-And-Drop Near Field Body Area Networks

This technology introduces a flexible, secure, and scalable approach to creating body area networks (BANs) using textile-integrated metamaterials for advanced healthcare monitoring.

Time Varying Electric Circuits Of Enhanced Sensitivity Based On Exceptional Points Of Degeneracy

Sensors are used in a multitude of applications from molecular biology, chemicals detection to wireless communications. Researchers at the University of California Irvine have invented a new type of electronic circuit that utilizes exceptional points of degeneracy to improve the sensitivity of signal detection.

Electrochemical Point-Of-Care Cerebrospinal Fluid Detection

A revolutionary device for the diagnosis of cerebrospinal fluid (CSF) leaks with rapid, accurate, and low-volume sampling at the point of care.

CoDesign.X: Evaluating Pediatric Room Design using VR and Biosensors

      Poorly designed healthcare environments can increase patient stress and delay recovery, particularly in pediatric settings (see, e.g., Devlin & Andrade 2017; Park et al. 2018; Jafarifiroozabadi et al. 2023). Traditional methods for gathering architectural design feedback, such as interviews, surveys, and focus groups, rely heavily on subjective user input, and often fail to capture the voices of children by relying on parent proxies. Physical mock-ups, a common alternative to traditional methods, provide a full-scale model of a room or space, often constructed from materials like cardboard or foam. While these mock-ups allow for some degree of spatial exploration, they are time-intensive, and limited in their ability to replicate real-world conditions; high-fidelity mock-ups which incorporate more realistic materials and finishes add expense and limit flexibility for testing multiple design iterations.       To overcome these challenges UC Berkeley researchers have developed an innovative participatory design methodology that leverages advanced virtual reality (VR), eye-tracking, and physiological/emotional biofeedback technologies to evaluate the design of pediatric healthcare environments. This comprehensive system is further enhanced by custom-developed workflows for creating dynamic, interactive room simulations that are randomized to ensure rigorous, unbiased data collection. The methodology is uniquely capable of gathering objective, quantifiable data on how pediatric patients and their families respond physiologically and emotionally to specific environmental design features.

FLUORESCENT PROBES AND USES THEREOF

Current biological and clinical imaging techniques are often hampered by probes with limited brightness, poor photostability, and an inability to penetrate deep tissue without significant background signal. This restricts high-resolution, long-duration, and in vivo studies of critical biological events. The innovation described herein, developed by UC Berkeley researchers, solves this challenge by providing a new class of Fluorescent Probes with superior photophysical and biochemical properties. This next-generation technology offers significantly enhanced specificity and quantum yield, particularly in the near-infrared (NIR) spectrum, enabling real-time, high-contrast visualization of molecular targets within living systems. Compared to existing alternatives like radioisotope labeling, magnetic resonance imaging (MRI), and conventional visible-light fluorophores, these novel probes enable less-invasive, highly sensitive, and dynamic monitoring of cellular processes, opening new avenues for both fundamental biological discovery and clinical translation.

Functional Biomarkers For The Diagnosis And Evaluation Of Mental Disorders

Mental disorders like depression and anxiety are often hard to diagnose and evaluate because there aren't any objective measures for them. This makes it difficult to tell the difference between these disorders and other conditions with similar symptoms. This invention, developed by UC Berkeley researchers, addresses this challenge by providing methods, compositions, and systems that use functional biomarkers to diagnose and evaluate mental disorders. The technology combines brain imaging techniques with a brain encoding model to objectively identify and assess these conditions. This approach offers a more precise and data-driven way to diagnose and evaluate mental disorders compared to traditional, subjective methods.

Broadband Light Emission with Hyperbolic Material

Researchers at the University of California, Davis have developed a solid-state device that uses Cherenkov Radiation to emit light at a tunable wavelength in the THz to IR range.

Inverse Design and Fabrication of Controlled Release Structures

Researchers at the University of California, Davis have developed an algorithm for designing and identifying complex structures having custom release profiles for controlled drug delivery.

Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy

      Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control.       UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.

  • Go to Page: