Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Imaging

Categories

[Search within category]

Motion-Corrected, Optical Imaging of Biological Tissue

Researchers at the University of California, Davis have developed a system that displays a real-time image - generated from optical signals - of biological tissue.

Single Catheter System Combining Intravascular Ultrasound and Fiber-Based Fluorescence Lifetime Imaging

Researchers at the University of California, Davis have developed a catheter device that combines intravascular ultrasound with fluorescence lifetime imaging to better detect significant vascular conditions.

Novel Positron Emission Tomography Agents for Imaging Neurodegeneration

New positron emission tomography (PET) imaging agent developed that uniquely binds to synucleinopathies and tauopathies in the Parkinson’s brain and may therefore serve as an early diagnostic marker.

Elastography based on X-Ray Ct and Sound Wave Integration

Researchers at UCI have created an elastography technique, which combines X-ray computed tomography (CT) and sound wave integration.  This adapted elastographic technique avoids the issues faced by ultrasound alone and permits medical imaging of deep tissue and measures the mechanical properties of materials.

Photoacoustic Spectroscopy Detection Of HFA, NO, And C02 From Exhaled Breath

UCI researchers introduced a medical device which simultaneously detects hydrofluoroalkane (HFA), carbon dioxide (CO2), and nitrogen monoxide (NO) in exhaled breath for monitoring and improving treatment of asthma and chronic obstructive pulmonary disease (COPD).

Automated Histological Image Processing tool for Identifying and Quantifying Tissue Calcification

Researchers at UCI have developed a method of identifying, quantifying, and visualizing tissue with calcification. The image processing tool can automatically characterize calcium deposits in CT images histological tissue, especially when it has accumulated in unusual places in the body.

Mapping Ciliary Activity Using Phase Resolved Spectrally Encoded Interferometric Microscopy

Researchers at UCI have developed an imaging technique that can monitor and measure small mobile structures called cilia in our airways and in the oviduct. This invention will serve as a stepping stone for study of respiratory diseases, oviduct ciliary colonoscopy and future clinical translations.

Polarization-Sensitive Optical Coherence Tomography Using a Polarization-Insensitive Detector

A polarization-sensitive optical coherence tomography (PS-OCT) is a common approach to non-invasively imaging in biomedical applications. The inventors have come up with a new way of creating a PS-OCT that is cheaper and simpler.

Novel Reflective Microscope Objective Lens For All Colors

The researchers at the University of California, Irvine (UCI) have developed a microscopic lens, made entirely of reflective curved surface, where all the light wavelengths are focused at the same time for better resolution and larger field view of the image.

Low-Dose Ct Perfusion Technique

Coronary atherosclerosis (a thickening of the arterial wall) is correlated to the occurrence of cardiac events; therefore, its correct and early diagnosis is paramount in the prevention and treatment of coronary artery disease. Researchers at UCI have developed an innovative method for assesses coronary artery stenosis and microvascular disease that is both accurate and non-invasive.

The Uro-Wheel

Though guidewires are a common part of many endoscopic procedures as they help the scope reach its desired organ successfully, they are often difficult to maneuver due to their flexible and slippery construction. To combat this and assist physicians in rapid and effective endoscopic placement, researchers at UCI have developed a novel device which, by a simple turn of a finger wheel, allows the guidewires to be automatically and controllably advanced and retracted.

Early Detection Of Diabetic And Decubitus Ulcers

Pressure ulcers and diabetic foot ulcers are a pervasive and expensive health care challenge. They are debilitating and can significantly impair quality of life, as they are associated with loss of pain sensation and disordered circulation. The gold standard to preventing pressure ulcers include regular patient  turning/repositioning. However, there are relatively few tools for molecular-level insight into when to reposition and who to reposition.

High Resolution Laser Speckle Imaging of Blood Flow

Prof. Guillermo Aguilar and his colleagues from the University of California, Riverside have developed a new approach to laser speckle imaging, called Laser Speckle Optical Flow Imaging (LSOFI) to be used for autonomous blood vessel detection and as a qualitative tool for blood flow visualization. LSOFI works by capturing the speckle displacement caused by different physical behavior and use the data to create a mapped image. It has been shown that LSOFI has many advantages over LSCI methods both in temporal and spatial resolution. Namely, LSOFI can be used to produce higher resolution images compared with the LSCI method using less frames. Combining this technology with Graphics Processing Unit (GPU) computation increases the speed of LSOFI, so GPU enabled LSOFI shows potential to create a fast and fully functional quasi-real time blood flow imaging system.  Fig 1: Comparison of blood flow imaging techniques applied to the raw image. The shown results are for Laser Speckle Optical Flow Imaging (LSOFI) using the Farneback Optical Flow algorithm, traditional Laser Speckle Imaging (LSI), and Temporal Frame Averaging (sLASCA).  

Development of a Thermal Endoscope for ENT Clinical Diagnostics

There is a clinical need for improved visual inspection for ENT diagnosis and surgeries. Endoscopy is required to access locations of ENT conditions. However, the assessment and identification of ENT abnormalities and pathologies remain challenging due to the difficult-to- reach ENT locations and the complex nature of the related pathologies. An imaging technique that could provide additional information, high contrast, and quantitative data about the patient condition will be useful, especially to assist ENT clinicians in diagnosis and surgeries and to avoid the need to resort to more expensive imaging techniques (e.g., CT scans, ultrasound imaging,MRI).

Imaging Modalities and Methods for Enhanced, Label-free Histopathology During Surgery

Researchers at the University of California, Davis have developed new techniques capable of producing near real-time tissue analysis with quality and accuracy attributes comparable to traditional Haemotoxylin and Eosin (H&E) histopathology methods.

Blood Flow Velocimetry via Data Assimilation of Medical Imaging

Cardiovascular disease (CVD) is a tremendous burden on the population in terms of morbidity and mortality, as well as on the healthcare system in terms of cost. Various forms of CVD including atherosclerosis, valve and ventricular dysfunction, aneurysms, and thrombogenesis can be identified by measuring localized abnormalities in blood flow. Accordingly, the ability to noninvasively interrogate physiological flows enables identification and diagnosis of disease, monitoring of the effects of therapy, and research on the hemodynamic nature of CVD and its associated interventions. In the clinic, blood flow measurements are primarily made using phase contrast magnetic resonance imaging (PC-MRI) and ultrasonic color Doppler imaging. Certain limitations of these techniques for patients who have contraindications or suffer from arrhythmias, as well as the desire for volumetric flow information necessitate the development of a new modality for blood flow velocimetry.

A Fully‐automated Deep Learning System (software code) for the Detection, Prognosis, and Visualization of Pulmonary Disease.

The majority of state‐of‐the‐art lung segmentation algorithms in the literature do not simultaneously segment lungs, lung lobes, and airway in a single algorithm. Additionally, automated algorithms typically perform the segmentation task on a series of 2D slices, which can reduce segmentation accuracy of anatomical structures (i.e. lung lobes) that may require contextual information across all three spatial dimensions. Many existing algorithms also have not been validated on chest CTs across a wide variety of conditions to evaluate algorithm generalizability. Currently, quantification of respiratory measurements requires a radiologist, trained analyst, or technician to recognize, identify, and manually annotate anatomical landmarks such as the lung lobes or airway in the chest. A fully‐automated deep learning system may eliminate the need for manual analysis, thereby improving efficiency and expanding applicability to a large number of CTs.

Software-Automated Medical Imaging Software for Standardizing the Diagnosis of Sarcopenia

Sarcopenia  is defined as an age associated decline in or loss of lean skeletal muscle mass. The pathophysiology can be multifactorial and the change in body composition may be difficult to detect due to obesity, changes in fat mass, or edema. Changes in weight, limb or waist circumference are not reliable indicators of muscle mass changes. Sarcopenia may also cause reduced strength, functional decline and increased risk of falling. Sarcopenia is otherwise asymptomatic and is often unrecognized.  

Multiphoton Magnetic Resonance Imaging

UC Berkeley researchers have developed novel imaging techniques with the use of a multiphoton magnetic resonance imaging apparatus. By taking a particular rotating frame transformation the researchers found that multiphoton excitations appear just like single‐photon excitations and can also use concepts explored in standard single‐photon excitation. One prototype included a low frequency coil while another prototype included no additional hardware but instead used oscillating gradients as a source of extra photons for excitation.  The methods and multiphoton MRI can be used to transform a standard slice selective adiabatic inversion pulse into a multiband version without modifying the RF pulse itself. The addition of oscillating gradients creates multiphoton resonances at multiple spatial locations and allows for adiabatic inversions at each location.

New Bright Green Fluorescent Proteins

Fluorescent proteins (FP) have been widely used as research tools in both academia and pharma for many years.  Naturally occurring FP have been mutated to either be brighter, be monomers, and/or for easier folding and expression in cells.  The most common FP to date has been the green fluorescent protein (GFP) of the jelly fish Aequorea victoria which can be expressed in cells and fused with proteins of interest, and has proven to be an excellent tool to study protein localization, expression, signaling, etc. in real time via microscopy and other techniques. 

Oldest-Old Mri Registration Template

MRI scans of patients/participants can be compared to template scans in order to identify differences or changes in brain anatomy. However, the templates that are used are typically of young brains, which lack the atrophy that naturally occurs in the aged brain. UCI researchers have developed a template for oldest old images (90+ age group) that takes into consideration the natural anatomical changes that can occur with aging.

Techniques for Improving Positron Emission Tomography Image Quality and Tracking Real-Time Biological Processes

Researchers at the University of California, Davis have developed methodologies that perform dynamic PET imaging and provide opportunities for tracing blood flow and other biological systems in real-time.

Cellular Potassium Imaging Using A Ratiometric Fluorescent Sensor

The inventors developed a ratiometric fluorescent small molecule probe for potassium ion detection composed of a duo-fluorophore system (KR-1). UV-vis detector and fluorometer measurement support ratiometric response of the probe towards potassium ion concentration. The probe was further applied to cellular potassium level detection using confocal microscope imaging technique. KR-1 enables simple determination of potassium levels in various cancer or non-cancer cell lines.

Software - Unified algorithm for data cleaning, source separation, and imaging of electroencephalographic signals: Recursive Sparse Bayesian Learning (RSBL)

Electroencephalographic source imaging (a.k.a. magnetic/electric or M/EEG source imaging, ESI, or brain electrical tomography) usually depends upon sophisticated signal processing algorithms for data cleaning, source separation and imaging. Typically, these problems are addressed separately using a variety of heuristics, making it difficult to systematize a methodology for extracting robust brain source images on a wide range of applications.

Noninvasive Method and Apparatus for Peripheral Assessment of Vascular Health

UCI researchers introduce a medical device which noninvasively and accurately monitors vascular health metrics such as endothelial function, arterial stiffness, and blood pressure.

  • Go to Page: