Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Imaging


[Search within category]

Mapping Ciliary Activity Using Phase Resolved Spectrally Encoded Interferometric Microscopy

Researchers at UCI have developed an imaging technique that can monitor and measure small mobile structures called cilia in our airways and in the oviduct. This invention will serve as a stepping stone for study of respiratory diseases, oviduct ciliary colonoscopy and future clinical translations.

Non-invasive Head and Neck Cancer Screening Probe based on Optical Coherence Tomography

Researchers at the Beckman Laser Institute have developed a non-invasive fiber optic probe capable of imaging and detecting cancerous tissue within the head and neck regions. The probe also helps to guide surgeons in effectively performing tumor removal.

Polarization-Sensitive Optical Coherence Tomography Using a Polarization-Insensitive Detector

A polarization-sensitive optical coherence tomography (PS-OCT) is a common approach to non-invasively imaging in biomedical applications. The inventors have come up with a new way of creating a PS-OCT that is cheaper and simpler.

Novel Reflective Microscope Objective Lens For All Colors

The researchers at the University of California, Irvine (UCI) have developed a microscopic lens, made entirely of reflective curved surface, where all the light wavelengths are focused at the same time for better resolution and larger field view of the image.

Low-Dose Ct Perfusion Technique

Coronary atherosclerosis (a thickening of the arterial wall) is correlated to the occurrence of cardiac events; therefore, its correct and early diagnosis is paramount in the prevention and treatment of coronary artery disease. Researchers at UCI have developed an innovative method for assesses coronary artery stenosis and microvascular disease that is both accurate and non-invasive.

The Uro-Wheel

Though guidewires are a common part of many endoscopic procedures as they help the scope reach its desired organ successfully, they are often difficult to maneuver due to their flexible and slippery construction. To combat this and assist physicians in rapid and effective endoscopic placement, researchers at UCI have developed a novel device which, by a simple turn of a finger wheel, allows the guidewires to be automatically and controllably advanced and retracted.

Early Detection Of Diabetic And Decubitus Ulcers

Pressure ulcers and diabetic foot ulcers are a pervasive and expensive health care challenge. They are debilitating and can significantly impair quality of life, as they are associated with loss of pain sensation and disordered circulation. The gold standard to preventing pressure ulcers include regular patient  turning/repositioning. However, there are relatively few tools for molecular-level insight into when to reposition and who to reposition.

High Resolution Laser Speckle Imaging of Blood Flow

Prof. Guillermo Aguilar and his colleagues from the University of California, Riverside have developed a new approach to laser speckle imaging, called Laser Speckle Optical Flow Imaging (LSOFI) to be used for autonomous blood vessel detection and as a qualitative tool for blood flow visualization. LSOFI works by capturing the speckle displacement caused by different physical behavior and use the data to create a mapped image. It has been shown that LSOFI has many advantages over LSCI methods both in temporal and spatial resolution. Namely, LSOFI can be used to produce higher resolution images compared with the LSCI method using less frames. Combining this technology with Graphics Processing Unit (GPU) computation increases the speed of LSOFI, so GPU enabled LSOFI shows potential to create a fast and fully functional quasi-real time blood flow imaging system.  Fig 1: Comparison of blood flow imaging techniques applied to the raw image. The shown results are for Laser Speckle Optical Flow Imaging (LSOFI) using the Farneback Optical Flow algorithm, traditional Laser Speckle Imaging (LSI), and Temporal Frame Averaging (sLASCA).  

Development of a Thermal Endoscope for ENT Clinical Diagnostics

There is a clinical need for improved visual inspection for ENT diagnosis and surgeries. Endoscopy is required to access locations of ENT conditions. However, the assessment and identification of ENT abnormalities and pathologies remain challenging due to the difficult-to- reach ENT locations and the complex nature of the related pathologies. An imaging technique that could provide additional information, high contrast, and quantitative data about the patient condition will be useful, especially to assist ENT clinicians in diagnosis and surgeries and to avoid the need to resort to more expensive imaging techniques (e.g., CT scans, ultrasound imaging,MRI).

Imaging Modalities and Methods for Enhanced, Label-free Histopathology During Surgery

Researchers at the University of California, Davis have developed new techniques capable of producing near real-time tissue analysis with quality and accuracy attributes comparable to traditional Haemotoxylin and Eosin (H&E) histopathology methods.

Blood Flow Velocimetry via Data Assimilation of Medical Imaging

Cardiovascular disease (CVD) is a tremendous burden on the population in terms of morbidity and mortality, as well as on the healthcare system in terms of cost. Various forms of CVD including atherosclerosis, valve and ventricular dysfunction, aneurysms, and thrombogenesis can be identified by measuring localized abnormalities in blood flow. Accordingly, the ability to noninvasively interrogate physiological flows enables identification and diagnosis of disease, monitoring of the effects of therapy, and research on the hemodynamic nature of CVD and its associated interventions. In the clinic, blood flow measurements are primarily made using phase contrast magnetic resonance imaging (PC-MRI) and ultrasonic color Doppler imaging. Certain limitations of these techniques for patients who have contraindications or suffer from arrhythmias, as well as the desire for volumetric flow information necessitate the development of a new modality for blood flow velocimetry.

A Fully‐automated Deep Learning System (software code) for the Detection, Prognosis, and Visualization of Pulmonary Disease.

The majority of state‐of‐the‐art lung segmentation algorithms in the literature do not simultaneously segment lungs, lung lobes, and airway in a single algorithm. Additionally, automated algorithms typically perform the segmentation task on a series of 2D slices, which can reduce segmentation accuracy of anatomical structures (i.e. lung lobes) that may require contextual information across all three spatial dimensions. Many existing algorithms also have not been validated on chest CTs across a wide variety of conditions to evaluate algorithm generalizability. Currently, quantification of respiratory measurements requires a radiologist, trained analyst, or technician to recognize, identify, and manually annotate anatomical landmarks such as the lung lobes or airway in the chest. A fully‐automated deep learning system may eliminate the need for manual analysis, thereby improving efficiency and expanding applicability to a large number of CTs.

Software-Automated Medical Imaging Software for Standardizing the Diagnosis of Sarcopenia

Sarcopenia  is defined as an age associated decline in or loss of lean skeletal muscle mass. The pathophysiology can be multifactorial and the change in body composition may be difficult to detect due to obesity, changes in fat mass, or edema. Changes in weight, limb or waist circumference are not reliable indicators of muscle mass changes. Sarcopenia may also cause reduced strength, functional decline and increased risk of falling. Sarcopenia is otherwise asymptomatic and is often unrecognized.  

Multiphoton Magnetic Resonance Imaging

UC Berkeley researchers have developed novel imaging techniques with the use of a multiphoton magnetic resonance imaging apparatus. By taking a particular rotating frame transformation the researchers found that multiphoton excitations appear just like single‐photon excitations and can also use concepts explored in standard single‐photon excitation. One prototype included a low frequency coil while another prototype included no additional hardware but instead used oscillating gradients as a source of extra photons for excitation.  The methods and multiphoton MRI can be used to transform a standard slice selective adiabatic inversion pulse into a multiband version without modifying the RF pulse itself. The addition of oscillating gradients creates multiphoton resonances at multiple spatial locations and allows for adiabatic inversions at each location.

New Bright Green Fluorescent Proteins

Fluorescent proteins (FP) have been widely used as research tools in both academia and pharma for many years.  Naturally occurring FP have been mutated to either be brighter, be monomers, and/or for easier folding and expression in cells.  The most common FP to date has been the green fluorescent protein (GFP) of the jelly fish Aequorea victoria which can be expressed in cells and fused with proteins of interest, and has proven to be an excellent tool to study protein localization, expression, signaling, etc. in real time via microscopy and other techniques. 

Oldest-Old Mri Registration Template

MRI scans of patients/participants can be compared to template scans in order to identify differences or changes in brain anatomy. However, the templates that are used are typically of young brains, which lack the atrophy that naturally occurs in the aged brain. UCI researchers have developed a template for oldest old images (90+ age group) that takes into consideration the natural anatomical changes that can occur with aging.

Techniques for Improving Positron Emission Tomography Image Quality and Tracking Real-Time Biological Processes

Researchers at the University of California, Davis have developed methodologies that perform dynamic PET imaging and provide opportunities for tracing blood flow and other biological systems in real-time.

Software - Unified algorithm for data cleaning, source separation, and imaging of electroencephalographic signals: Recursive Sparse Bayesian Learning (RSBL)

Electroencephalographic source imaging (a.k.a. magnetic/electric or M/EEG source imaging, ESI, or brain electrical tomography) usually depends upon sophisticated signal processing algorithms for data cleaning, source separation and imaging. Typically, these problems are addressed separately using a variety of heuristics, making it difficult to systematize a methodology for extracting robust brain source images on a wide range of applications.

Noninvasive Method and Apparatus for Peripheral Assessment of Vascular Health

UCI researchers introduce a medical device which noninvasively and accurately monitors vascular health metrics such as endothelial function, arterial stiffness, and blood pressure.

Improved bioconjugation reaction for antibody drug conjugates

Antibody drug conjugates (ADCs) are a quickly developing class of oncology therapeutics. Current synthetic methods and chemical linkages produce ACDs that are reversible at physiological conditions and have varying amounts of drug per targeting antibody. These weakly held conjugates result in diminished antitumor activity and increased toxicity. Researchers at UCI have developed new conjugation chemistry to generate stable and uniform ADCs.

Simple Imaging Tool for Oral Cancer Detection and Monitoring

UCI researchers have developed a miniature, flexible intra-oral probe with a camera that allows early detection of oral cancer lesions in difficult-to-see, high risk areas of the mouth and throat. The tool allows for a low cost, non-invasive procedure that can be easily adopted in non-specialist medical settings.

Novel Non-Immunogenic Positron Emission Tomography Gene Reporter

UCLA researchers in the Department of Pharmacology and Department of Microbiology, Immunology, & Molecular Genetics have developed a novel positron emission tomography reporter gene to preferentially trap radiolabeled deoxycytidine analogs.

Non-Immunogenic Positron Emission Tomography Gene Reporter Systems

UCLA researchers in the Department of Pharmacology and Department of Microbiology, Immunology, & Molecular Genetics have developed a novel dual gene positron emission tomography reporter system for the enhanced labeling of cells in vitro and in vivo.

Microscale Device and Method for Purification of Radiopharmaceuticals

UCLA researchers from the Departments of Molecular & Medical Pharmacology and Bioengineering have developed a novel method for the purification of radiopharmaceuticals for the on-demand production of positron emission tomography (PET) tracers.

Device and Method for Microscale Chemical Reactions

UCLA researchers in the Departments of Bioengineering and Molecular and Medical Pharmacology have developed a passive microfluidic reactor chip with a simplified design that is less costly than existing microfluidic chips.

  • Go to Page: