Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Imaging

Categories

[Search within category]

New Bright Green Fluorescent Proteins

Fluorescent proteins (FP) have been widely used as research tools in both academia and pharma for many years.  Naturally occurring FP have been mutated to either be brighter, be monomers, and/or for easier folding and expression in cells.  The most common FP to date has been the green fluorescent protein (GFP) of the jelly fish Aequorea victoria which can be expressed in cells and fused with proteins of interest, and has proven to be an excellent tool to study protein localization, expression, signaling, etc. in real time via microscopy and other techniques. 

Oldest-Old Mri Registration Template

MRI scans of patients/participants can be compared to template scans in order to identify differences or changes in brain anatomy. However, the templates that are used are typically of young brains, which lack the atrophy that naturally occurs in the aged brain. UCI researchers have developed a template for oldest old images (90+ age group) that takes into consideration the natural anatomical changes that can occur with aging.

Techniques for Improving Positron Emission Tomography Image Quality and Tracking Real-Time Biological Processes

Researchers at the University of California, Davis have developed methodologies that perform dynamic PET imaging and provide opportunities for tracing blood flow and other biological systems in real-time.

Software - Unified algorithm for data cleaning, source separation, and imaging of electroencephalographic signals: Recursive Sparse Bayesian Learning (RSBL)

Electroencephalographic source imaging (a.k.a. magnetic/electric or M/EEG source imaging, ESI, or brain electrical tomography) usually depends upon sophisticated signal processing algorithms for data cleaning, source separation and imaging. Typically, these problems are addressed separately using a variety of heuristics, making it difficult to systematize a methodology for extracting robust brain source images on a wide range of applications.

Noninvasive Method and Apparatus for Peripheral Assessment of Vascular Health

UCI researchers introduce a medical device which noninvasively and accurately monitors vascular health metrics such as endothelial function, arterial stiffness, and blood pressure.

Simple Imaging Tool for Oral Cancer Detection and Monitoring

UCI researchers have developed a miniature, flexible intra-oral probe with a camera that allows early detection of oral cancer lesions in difficult-to-see, high risk areas of the mouth and throat. The tool allows for a low cost, non-invasive procedure that can be easily adopted in non-specialist medical settings.

Novel Non-Immunogenic Positron Emission Tomography Gene Reporter

UCLA researchers in the Department of Pharmacology and Department of Microbiology, Immunology, & Molecular Genetics have developed a novel positron emission tomography reporter gene to preferentially trap radiolabeled deoxycytidine analogs.

Non-Immunogenic Positron Emission Tomography Gene Reporter Systems

UCLA researchers in the Department of Pharmacology and Department of Microbiology, Immunology, & Molecular Genetics have developed a novel dual gene positron emission tomography reporter system for the enhanced labeling of cells in vitro and in vivo.

Microscale Device and Method for Purification of Radiopharmaceuticals

UCLA researchers from the Departments of Molecular & Medical Pharmacology and Bioengineering have developed a novel method for the purification of radiopharmaceuticals for the on-demand production of positron emission tomography (PET) tracers.

Device and Method for Microscale Chemical Reactions

UCLA researchers in the Departments of Bioengineering and Molecular and Medical Pharmacology have developed a passive microfluidic reactor chip with a simplified design that is less costly than existing microfluidic chips.

pH-Weighted MRI Using Fast Amine Chemical Exchange Saturation Transfer (CEST) Imaging

UCLA researchers in the Department of Radiological Sciences and Department of Biomedical Physics have developed a novel magnetic resonance imaging (MRI) technique that utilizes amine chemical exchange saturation transfer (CEST) to capture pH-weighted images for measuring tissue acidity.

Method for Concentration and Formulation of Radiopharmaceuticals

Researchers at the UCLA Department of Medical and Molecular Pharmacology have developed a compact microfluidic device that is able to achieve rapid concentration and/or reformulation of PET tracers after HPLC purification.

Improved Cryosectioned Tissue Imaging Using Artificial Intelligence-Based Image Mapping

Researchers at the University of California, Davis have developed a process that utilizes artificial intelligence-based image mapping to improve the image of frozen tissue sections and reduce artifacts and distortion of those specimens.

In Vivo Retinal Imaging via Improved Visible Light Optical Coherence Tomography (OCT)

Researchers at the University of California, Davis have developed a technique that integrates multiple technological innovations to use visible light OCT for improved retinal imaging.

Automated Selection of Myocardial Inversion Time with a Convolutional Neural Network

Magnetic resonance imaging (MRI) has been noted for its excellent soft tissue imaging capability with zero radiation dose. It has repeatedly been touted as the imaging modality of the future, but due to its complexity, long exam times and high cost, its growth has been severely limited. This especially has been the case for cardiac MRI, which only accounts for about I percent of all MRI exams in the United States. Delayed enhancement (DE) imaging is an essential component of cardiac MRI, widely used for the evaluation of myocardial scar and viability. The selection of an optimal inversion time (TI), known as the myocardial null point (TINP), to suppress the background myocardial signal is required to optimize image contrast in myocardial delayed enhancement (MDE) acquisitions. Incorrect selection of TINP can impair diagnostic quality. In certain diffuse myocardial diseases such as amyloidosis, it may be difficult to identify a single optimal null point. Further, it is known that TINP varies after intravenous contrast administration, and is therefore time-sensitive. In practice, selection of myocardial inversion time is generally performed through visual inspection and selection of TINP from an inversion recovery scout acquisition. This is dependent on the skill of a technologist or physician to select the optimal inversion time, which may not be readily available outside of specialized centers. However, such methods still rely on visual inspection of an image series by a trained human observer to select an optimal myocardial inversion time. A way to overcome these deficiencies is to embrace Deep learning approaches, including convolutional neural networks (CNNs),     which have the potential to automate selection of inversion time, and are the current state-of-the-art technology for image classification, segmentation, localization, and Spatial Temporal Ensemble Myocardium Inversion NETwork (STEMI-NET) prediction. However, these static CNN models have some drawbacks which could be overcome via the use of dynamic temporal activities for object recognition.

Real-time 3D Image Processing Platform for Visualizing Blood Flow Dynamics

Researchers at UCI have developed an image processing platform capable of visualizing 3D blood flow dynamics of the heart in real-time. This technology aims to be a promising tool for looking at areas of the heart that were previously difficult to image and to better understand the dynamics in cardiac dysfunctions.

A Method For Digital Pathology Using Augmented Reality

UCLA researchers in the Departments of Electrical Engineering and Computer Engineering have developed a novel method for automated image analysis of digital pathology slides.

Development of Novel Fluorescent Puromycin Derivatives

Puromycin is an aminonucleoside antibiotic produced by the bacterium Streptomyces alboniger. Its mode of action is to inhibit protein synthesis by disrupting peptide transfer on ribosomes, leading to premature chain termination during protein translation. Puromycin blocks protein synthesis in both eukaryotes and prokaryotes and is routinely used as a research tool in cell culture. The native Puromycin is also used assays such as mRNA display. As such, derivatives have been synthesized in which the amino acid of the 3' end of adenosine based antibiotics is altered to change the compound's antibiotic activity. Other compounds have been synthesized with differing amino acids and functionalities to examine the effect it has on bacterial viability. The majority do not show useful absorption or emission profiles. What is needed is a method to track the compounds in biological systems.

Use of a Radiation Detector that Combines Virtual Frisch Grid and Cerenkov Readouts

Researchers at the University of California, Davis have developed a radiation detector for high energy photons that employs a transparent semiconductor with a high index of refraction to combine benefits of Virtual Frisch Grid devices and the readout of Cerenkov light.

Breathing Motion Artifact Reduction In CT

UCLA researchers have developed a novel scanning and analysis method for breathing motion-correlated CT that can provide breathing motion-artifacts free images for subsequent use in biomechanical modeling for COPD diagnosis and radiation therapy treatment planning.

New Method for the Detection of Vulnerable Plaques in Coronary Artery Atherosclerotic Disease (CAD)

Heart disease is a major leading cause of morbidity and mortality in the U.S. largely due to coronary artery atherosclerotic disease (CAD), which affects millions and costs billions annually. The concept of plaque vulnerability, based on likelihood of fibroatheroma rupture, has prompted many pursuits to identify high risk lesions, costing $150 million per year. However, identifying vulnerable plaques based on structure, via coronary angiograms or CT/MRI scans, has not translated to improved clinical outcome. Thus, the failure to identify and predict plaques at high risk of rupture, which may lead to myocardial infarction, heart failure and/or sudden cardiac death, is likely because structure may not optimally discern plaque vulnerability. Molecular imaging, in contrast, offers an innovative approach for discriminating the vulnerable plaque in that it not only visualizes structure, but also interrogates underlying molecular function. Based on the current methods to detect plaques, there is a need for a better method for measuring plaque rupture vulnerability.

Intravascular Ultrasound-guided Electrochemical Impedance Spectroscopy (IVUS-EIS) to Assess Lipid-Laden Plaques

UCLA researchers in the Department of Medicine have developed a novel intravascular ultrasound-guided electrochemical impedance spectroscopy (IVUS-EIS) system for the detection of oxLDL-laden plaques in arteries.

Stereo Image Acquisition By Lens Translation

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel single-objective lens stereo imaging setup for endoscopic applications.

A New Human-Monitor Interface For Interpreting Clinical Images

UCLA researchers in the Department of Radiological Sciences have invented a novel interactive tool that can rapidly focus and zoom on a large number of images using eye tracking technology.

Automated Phantom Image Assessment for Medical Imaging Applications

UCLA researchers in the Department of Radiology have developed a method for automated calibration of phantom images.

  • Go to Page: