Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Disease: Kidneys and Genito-Urinary System

Categories

[Search within category]

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Urine Metabolomics For Identification Of Novel Biomarkers For Transplant Injury

This invention discloses a method for the non-invasive detection of renal allograft injuries–acute rejection, BK virus, and/or chronic allograft nephropathy–via a panel of novel biomarkers. 

Method to Direct the Reciprocal Interactions Between the Ureteric Bud and the Metanephric Mesenchyme

Researchers at UCLA have developed an approach to construct an embryonic kidney in vitro for the treatment of end stage renal disease.

Targeting Kidney Stones: A Neutraceutical Formulation / Functional Food containing Bioactives

Changing diets and lifestyles are causing dramatic increases in painful kidney stones. Tastes for high-salt processed foods, high-sugar foods and drinks, and poor hydration are all causes. It is estimated that 10-20% of the population will develop a kidney stone, resulting in extreme pain, which may require surgical intervention. Alongside direct medical procedures, patients are often given potassium citrate pills as an adjunct therapy, but these are poorly-tolerated due to gastrointestinal side effects and large size of the pills, all of which decrease patient compliance. These current formulations require a twice-a-day dosing regimen, which only exacerbates the compliance problem. However, beyond these citrate pills, sadly few effective medical alternatives exist. To remedy this problem, UC San Diego physicians have recently developed a neutraceutical formulation, specifically designed to comprise precise balance of bioactives within a well-tolerated functional food, supporting the targeted relief of kidney stones.

Modular Wireless Large Bore Vacuum Universal Endoscope A.K.A. Vacuumscope

Though kidney stones are a prevalent problem that affect more than 10% of the population and cost the US economy upwards of $10 billion annually, the complete removal of stone fragments is difficult to achieve without surgical interventions. Researchers at UCI have developed a novel vacuum endoscope which, when combined with standard kidney stone ablation procedures, is capable of completely removing the resulting fragments.

Novel Small Molecule Drug for the Treatment of Constipation and Oxalate Kidney Stones

UCSF researchers have developed a novel small molecule drug that specifically targets and inhibits SLC26A3 (DRA), an anion exchanger whose inhibition is expected to have therapeutic benefit in constipation and oxalate kidney stone disease.

Humanized Antibodies to the Extracellular Domains of Human N-Cadherin

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed humanized antibody therapies for invasive prostate and bladder cancers that express N-cadherin.

Oral Microsensor Arrays for Remote Monitoring of Salivary Electrolytes for Precision Healthcare

UCLA researchers in the Department of Oral & Maxillofacial Surgery have developed a novel microsensor system for unobtrusive monitoring of oral pH and electrolytes levels. This system is integrated into a data analysis and feedback network for disease prevention and precision care.

Capture device for small urinary tract stones

The invention is a surgical device designed to remove miniature fragments of uroliths that are less than 2 mm in size. Through the invention’s novel design, such small fragments are captured in the device which will then be easily removed by the surgeon. Removing small stone fragments will reduce the need for future medical procedures.

Pressure Based Mechanical Feedback to Safely Insert Catheters

A pressure sensing device that provides feedback during the insertion of a ureteral access sheath to prevent unwanted damage to the wall of the ureter.

Non-Invasive Bladder Volume Sensing Device

Researchers at the University of California, Davis have developed an apparatus and methods for non-invasive bladder volume sensing, to determine when a patient’s bladder is full.

Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface

Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.

Microfluidics Device For Digestion Of Tissues Into Cellular Suspension

A microfluidic device that separates single cells from whole tissue in a rapid and gentle manner using hydrodynamic fluid flow. The separated single cell suspensions can then be used in tissue engineering applications, regenerative medicine and the study of cancer.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

A vaccination strategy against Chlamydia and other sexually transmitted diseases

No vaccines exist against the common sexually-transmitted disease, Chlamydia. The current invention is a novel vaccination formulation wherein fragments from two different microbial proteins, one each from a Chlamydia species and a Neisseria species are fused together. This novel fusion protein is proposed as a robust vaccine to provide protection against Chlamydia.

Hybridoma Producing Antibodies To C1qRp

Individuals with genetic immunodeficiency, as well as patients with HIV, cancer, and those undergoing chemotherapy or high risk surgery, are at increased risk for infection. C1q, an important component of the immune system, is known to enhance phagocytosis (cell ingestion of harmful bacteria or other materials). Scientists at UCI have developed antibodies to the receptor for C1q, C1qRp, to be used as a target for prophylactic treatments in populations at high risk of infection.

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Device For Global And Targeted Delivery Of Brachytherapy To The Bladder Lumen

UCLA researchers have designed a device that delivers local radiation to the bladder lumen limiting harmful off-target effects. This technology enables the use of radiotherapy as a safe and effective treatment for early stage bladder cancer patients.

Methods and Compositions of Treating Diabetic Nephropathy and Insulin Resistance

Researchers at the University of California, Davis have developed novel methods and compositions for the treatment of diabetic nephropathy and insulin resistance.

Integrated Ultrasound And Optical Coherence Tomography (OCT) Endoscope For Image Guided Cancer Biopsy

Gastrointestinal cancers are very difficult to diagnosis due to poor biopsy and diagnosis techniques. The invention is a device that is minimally invasive and improves biopsy technique by enabling the physician to visualize a tissue in real time prior to its biopsy. This allows for improved biopsy collection and thereby increases the diagnosis accuracy.

Method of Delivering Antibodies into Cyst Lumens for Treatment of Polycystic Kidney Disease

A new delivery method for antagonist antibodies to reach their targets inside the fluid-filled kidney cyst lumens causing ADPKD. 

Shrink-Induced, Self-Driven Microfluidic Devices

The addition of novel surface modifications and use of shrink-wrap film to create devices will yield self-driven, shrink-induced microfluidic detection for samples such as bodily fluids. Novel fabrications and surfaces will have a profound impact on the creation of point of care diagnostics.

Bladder Denervation For Treating Overactive Bladder

The device and method uses a technique through a vaginal probe to cause denervation of the overactive bladder. The vaginal probe denervates the pelvic nerve supply to the overactive bladder. Women with high urine frequency could be candidate for this simple procedure.

A Method for Rapid Generation of Many Different Branched Epithelial Proto-Organs

Currently, patients suffering from diseased and injured organs can be treated with transplanted organs; however, there is a severe shortage of donor organs.  In the United States alone, more than 114,000 people are on transplant waiting lists and have a probability of less than 35 percent of receiving an organ transplant within five years of being added to the list.  Many of the organs in question are branched epithelial organs. Tissue engineering has long held promise for building new organs to functional replace the ones in patients with organ injuries or end-stage organ failure.  However, one major obstacle that remains is the construction of complex 3D functional vascularized epithelial tissues (e.g. lung, kidney, pancreas with both exocrine and endocrine function, breast, and salivary gland, prostate).  Many solutions have been proposed, including bioprinting and assembly of cells around extracellular scaffolds of existing organs, but the complex three-dimensional physiology of branched organs cannot be reproduced.  Importantly, a very promising area of organ-tissue engineering is the production of vascularized proto-organs or biological tissues to analyze organ toxicity from drugs and environmental toxins.  Engineered tissues may offer more accurate predictions of the side effects of potential therapeutic agents because they contain human cells. 

  • Go to Page: