Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Electronics Packaging

Categories

[Search within category]

Bioactive Plastics With Programmable Degradation And Microplastic Elimination

Although the plastic waste crisis has reached a breaking point, current recycling approaches are unable to remediate microplastic pollution. Biodegradable and renewable plastics have shown promise but impact neither microplastic elimination nor complete plastic recycling due to diffusion-limited enzymatic surface erosion and random chain scission. Here it is shown that nanoscopic dispersion of trace enzyme (e.g. lipase) in plastics (e.g. polycaprolactone [PCL]) leads to fully functional plastics with eco-friendly microplastic elimination and programmable degradation. Nanoscopic enzyme encapsulation leads to:continuous degradation to achieve 95% microplastic eliminationa single chain-based degradation mechanism with repolymerizable small molecule by-products via selective chain end scission rather than random chain scissionspatially- and temporally-programmable degradation of melt-processed host matrix due to the dependence of single chain degradation on local lamellae thickness regardless of bulk percent crystallinity formulation of conductive ink for 3-D printing with full recovery of the precious metal filler With recent developments in synthetic biology and genome information, nanoscopically embedding catalytically active enzymes in plastics may lead to an immediate, environmentally friendly and technologically viable solution toward microplastic elimination and material recycling.

2D Perovskite Stabilized Phase-Pure Formamidinium Perovskite Solar Cells and Light Emitting Diodes

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell based on a mixture of formamidinium perovskites and 2D perovskites.

Flexible Microfluidic Sensors for Curved Surfaces

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed flexible tactile sensors for curved surfaces that are robust against fatigue and suitable for robotic applications.

Cephalopod-Inspired Adaptive Infrared Camouflage Materials and Systems

This technology is a new class of materials capable of thermal regulation and active camouflage. These cephalopod-inspired materials, configurable to different geometries, can be used in many sectors, ranging from consumer to industrial to military applications.

High Thermal Conductivity Boron Arsenide For Thermal Management, Electronics, And Photonics Applications

UCLA researchers in the Department of Mechanical & Aerospace Engineering have developed a novel boron arsenide (BAs) material that has an ultra-high thermal conductivity of 1300 W/mK and low cost of synthesis and processing.

A Solution Method To Improve Nanowires Connection And Its Applications In Electro-Related Areas

UCLA researchers in the Department of Materials Science and Engineering have developed a simple solution-based method for fabricating highly conductive transparent silver nanowire (AgNW) films with excellent adhesive capabilities and noteworthy electrical, mechanical, and optical performance.

Heterogeneously Integrated GaN on Si Photonic Integrated Circuits

A process that results in new capabilities of GaN lasers. Functionalities include surface emission, beam steering, enhanced performance, low waveguide loss, and superior reliability.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

Flexible And Stretchable Interconnects For Flexible Systems And Flextrate(Tm)

Researchers led by Professor Subramanian Iyer from the Department of Electrical Engineering at UCLA have developed a novel fabrication technique to create stretchable electronics.

A Bi-Functional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells

UCLA researchers in the department of Materials Science & Engineering have discovered a novel Lewis base additive that decreases heterogeneity in perovskite thin films.

An Implantable Electrocorticogram (ECoG)-Brain-Computer Interface System for Restoring Lower Extremity Movement and Sensation

A fully implantable brain-computer interface (BCI) with onboard processing to control a robotic gait exoskeleton as a walking aid for individuals with chronic spinal cord injury (SCI). This technology would alleviate SCI patient’s dependence on wheel chairs, reducing the risk of secondary medical complications that account for an estimated $50 billion/year in healthcare costs.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Electrical Conduction In A Cephalopod Structural Protein

Fabricating materials from naturally occurring proteins that are inherently biocompatible enables the resulting material to be easily integrated with many downstream applications, ranging from batteries to transistors. In addition, protein-based materials are also advantageous because they can be physically tuned and specifically functionalized. Inventors have developed protein-based material from structural proteins such as reflectins found in cephalopods, a molluscan class that includes cuttlefish, squid, and octopus. In a space dominated by artificial, man-made proton-conducting materials, this material is derived from naturally occurring proteins.

A Digital Polar and a ZVS Contour Based Hybrid Power Amplifier

Researchers in the UCLA Department of Electrical Engineering have created a hybrid digital polar and zero switching voltage (ZVS) contour power amplifier, offering higher efficiency for up to 36 dB peak-to-average ratio.

A Low-Cost-Wafer-Level Process For Packaging MEMS 3-D Devices

A low-cost solution to robust electronic packaging of 3-D MEMS devices using micro-glassblown “bubble-shaped” structures.

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

Thermally Stable Silver Nanowire Transparent Electrode

UCLA researchers in the Department of Materials Science and Engineering have developed a novel transparent and flexible electrode material for optoelectronic device applications.

Efficient and Stable Perovskite Solar Cells with All Solution Processed Metal Oxide Transporting Layers

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell with a metal oxide charge transport layer.

Amorphous Silicon And Polymer Hybrid Tandem Photovoltaic Cell

UCLA researchers in the Department of Materials Science and Engineering have developed a novel hybrid organic-inorganic solar cell that has a power conversion efficiency of ~10.5%.

Design of Semi-Transparent, Transparent, Stacked or Top-Illuminated Organic Photovoltaic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed novel tandem transparent and semi-transparent organic photovoltaic (OPV) devices.

Silver Nanowire-Indium Tin Oxide Nanoparticle As A Transparent Conductor For Optoelectronic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed a novel composite material made of metal oxide nanoparticles (NPs) and silver nanowires (AgNWs).

Novel Polymers for Polymer Solar Cells, Transistors, and Sensors

UCLA researchers in the Department of Materials Science and Engineering have developed a novel class of conjugated polymers for photo-electronic device applications.

Operation Frequency Band Customizable and Frequency Tunable Filters with EBG substrate

The technology relates to cavity resonators and filters for improved processing of electromagnetic signals. Specifically, the invention is a cavity resonator or filter that is constructed on electromagnetic bandgap substrate that includes an external controlling assemble can change the work frequency of the cavity resonator or filter. This enables device access to frequencies with a very broad range.

Synthesis Technique to Achieve High-Anisotropy FeNi

Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy L1 FeNi by combining physical vapor deposition and a high speed rapid thermal annealing (RTA).

  • Go to Page: