Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Imaging > Other

Categories

[Search within category]

Simultaneous Acquisition Of Multiple Epi-Fluorescence Micrographs

UCSF researchers have developed a novel microscope system which allows multiple images of a single sample to be acquired simultaneously.  These images are structured and, when coupled with conventional structured illumination image processing methods, can provide video rate, super-resolution micrographs. 

Graphene Oxide Based Affinity Grids As Sample Supports For High- Resolution Cryo Electron Microscopy.

Inventors at UCSF have developed a novel and economical method to produce a new generation of Cryo-EM sample grids that bind purify and protect biomolecule samples.

Head-Mounted Display EEG Device

Diagnosis and detection of progression of neurological disorders remain challenging tasks. For example, a validated portable objective method for assessment of degenerative diseases would have numerous advantages compared to currently existing methods to assess functional loss in the disease. An objective EEG-based test would remove the subjectivity and decision-making involved when performing perimetry, potentially improving reliability of the test. A portable and objective test could be done quickly at home under unconstrained situations, decreasing the required number of office visits and the economic burden of the disease. In addition, a much larger number of tests could be obtained over time. This would greatly enhance the ability of separating true deterioration from measurement variability, potentially allowing more accurate and earlier detection of progression. In addition, more precise estimates of rates of progression could be obtained.

System For Fast Multi-Photon Imaging Using Spectrally Diffracted Excitation

UCLA researchers in the Department of Electrical Engineering have developed a new system for fast multi-photon imaging using spectrally diffracted excitation.

Chronoprints: Identifying Adulterated Samples in Food and Drug Safety

Prof. Will Grover and his colleague at the University of California have developed a method to identify adulterated drugs and foods by observing how they behave when disturbed by temperature changes or other causes. Images of the sample’s behavior as it freezes over time are captured and processed into chronoprints.  Chronoprints are fundamentally bitmap images of samples on a computer, and it is possible to leverage existing image analysis and comparison techniques that have been already developed to analyze Chronoprints. Fig. 1 Producing a "chronological fingerprint" or chronoprint capturing how six samples (in this example, authentic and adulterated samples of an over-the-counter liquid cold medicine) respond to a perturbation over space and time (in this case, a rapidly changing temperature gradient). (A) A microfluidic thermometer chip containing the samples is partially immersed in liquid nitrogen to establish a rapidly changing temperature gradient along the chip. (B) The chip contains six samples (red) loaded in microfluidic channels that run parallel to the dynamic temperature gradient. (C) An inexpensive USB microscope records a video of the physical changes in the samples as they react to the dynamic temperature gradient.  Fig. 2 By reducing each channel image to a single column of pixels, and then placing these columns side-by-side, we create a bitmap image (the sample’s chronoprint) that captures how the sample changes over space (the y-axis) and time (the x-axis). Finally, by comparing the chronoprints of all six samples in the chip, we can determine whether the samples are either likely the same or definitely different.  

Method for Concentration and Formulation of Radiopharmaceuticals

Researchers at the UCLA Department of Medical and Molecular Pharmacology have developed a compact microfluidic device that is able to achieve rapid concentration and/or reformulation of PET tracers after HPLC purification.

A Method For Digital Pathology Using Augmented Reality

UCLA researchers in the Departments of Electrical Engineering and Computer Engineering have developed a novel method for automated image analysis of digital pathology slides.

An On-Bed Monitoring System For Rehabilitative Exercises

UCLA researchers have developed a novel method for monitoring rehabilitative exercises using a bed sheet with high-density pressure sensors.

Use of a Radiation Detector that Combines Virtual Frisch Grid and Cerenkov Readouts

Researchers at the University of California, Davis have developed a radiation detector for high energy photons that employs a transparent semiconductor with a high index of refraction to combine benefits of Virtual Frisch Grid devices and the readout of Cerenkov light.

SYSTEM AND METHOD TO OBTAIN HYPERSPECTRAL IMAGING IN HIGHLY SCATTERING MEDIA BY THE SPECTRAL PHASOR APPROACH

Hyperspectral imaging is a technique combining imaging and spectroscopy resulting in images with extraordinary precision and detail. Current approaches to capture hyperspectral images are costly and time-consuming. The proposed technique makes use of inexpensive filters and reduces the number of required exposures, thereby improving the efficiency and practicability of obtaining hyperspectral images.

Incorporation of Mathematical Constraints in Methods for Dose Reduction and Image Enhancement in Tomography

UCLA researchers have developed an algorithm that enables construction of 3D images from tomographic data through iterative methods with the incorporation of mathematical constraints. This methodology is an improvement over conventional techniques as it allows for radiation dose reduction and improved resolution.

Dicom/Pacs Compression Techniques

Researchers led by Xiao Hu from the Department of Surgery at UCLA have created a novel and convenient way to compress and query medical images from a PACS system.

A New Format For Representing And Encoding Images

Researchers in the Statistics and Computer Science Departments at UCLA have developed a method for image compression that is 5x more efficient than JPEG image coding.

Method to Reuse Multielectrode Arrays in Rodents

Researchers at the University of California have developed a protocol to enable the reuse of MEA probes.  Using this protocol, the MEA probes can be carefully peeled off undamaged from a protective layer, cleaned with ethanol and stored for re-use.  In addition, at each reuse the measured electrode impedances remain within the normal range set by the manufacturer for every channel and the probes may be reused up to six times.  This protocol is an improvement over the existing published protocols in that (1) these particular MEA electrodes are available commercially in a variety of configurations; (2) the MEA can be reused a number of times in order to record EEG in freely moving mice. Fig. 2 Setup of MEA EEG that allowed for enhanced reusability.

Modular Phantom for the Assessment of Imaging Performance And Dosage in Cone-Beam CT

Researchers at the University of California, Davis and Johns Hopkins University have created a 3D modular phantom for the assessment of imaging performance and dosimetry in cone-beam CT.

Quantitative Multiparametric PET/CT Imaging for Nonalcoholic Fatty Liver Diseases

Researchers at the University of California, Davis have developed a quantitative imaging method to detect and characterize liver inflammation for diagnosing a wide spectrum of nonalcoholic fatty liver diseases (NAFLDs).

Pairwise-Learning Framework for Image Quality Assessment

A data-driven, machine-learning approach called the Pairwise-Learning Framework (PLF) that can automatically compute visual error between two images of a given scene in a manner that is consistent with human visual perception.

Multi-Frequency Harmonic Acoustography for Target Identification and Border Detection

UCLA researchers in the Department of Bioengineering, Electrical Engineering, and Head and Neck Surgery have developed a novel ultrasound-based imaging technique that can be used to analyze tumor margins during surgery.

In-Situ TEM Holder With STM Probe And Optical Fiber

Researchers at UCI have developed a fully integrated sample mount for the simultaneous high-resolution imaging and electronic and optical characterization of thin film devices.

Air Quality Monitoring Using Mobile Microscopy And Machine Learning

UCLA researchers have developed a novel method to monitor air quality using mobile microscopy and machine learning.

Multi-Echo Spin-, Asymmetric Spin-, And Gradient Echo Echoplanar Imaging (Message-EPI) MRI

UCLA researchers in the Department of Radiological Sciences have developed a new MRI pulse sequence optimized for brain imaging.

High Dynamic Range (HDR) Digital Imaging with Neural Networks

Standard digital cameras typically take images with under/overexposed regions because of their sensors’ limited dynamic range. The most common way to capture high dynamic range (HDR) images using these cameras is to take a series of low dynamic range (LDR) images at different exposures and then merge them into an HDR image. Producing a high dynamic range (HDR) image from a set of images with different exposures is a challenging process for dynamic scenes. A category of existing techniques first register the input images to a reference image and then merge the aligned images into an HDR image. However, the artifacts of the registration usually appear as ghosting and tearing in the final HDR images.

Lensfree Tomographic Imaging

UCLA researchers in the Department of Electrical Engineering have developed a system for lens-free tomographic imaging.

Simple All-in-One UV Waveguide Microscope with Illumination Sectioning for Surface Morphology and Fluorescence Imaging

Researchers at the University of California, Davis have developed an all-in-one microscope combining ultraviolet excitation light with a waveguide directly integrated onto a light microscope stage, capable of providing surface morphology and fluorescence information with minimal sample preparation.

  • Go to Page: