Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Computer > Software

Categories

[Search within category]

Software for Automated Microfluidic Chip Design

Professor Brisk’s research group at the University of California, Riverside, has developed software to design and analyze an entire microfluidic chip. This is done using Microfluidic Design Automation (MDA) software to synthesize and physically lay out the devices.This software uses Microfluidic  Design  Automation (MDA) to  physically  render chips.  This  approach  is  similar  to  Electronic  Design Automation (EDA) in the semiconductor industry. The  software  automatically creates a chip architecture that is converted to MHDL, a  human-readable microfluidic hardware design language, enabling manual refinement. When  the  chip  designer  is  satisfied  with  the  architecture,  the software  physically  lays  out  the  different  layers  of  the  chip. The  output  is  an  AutoCAD  DXF  (or  other  vector  graphics) file that can be transferred to a foundry for fabrication. Fig. 1 shows a microfluidic device layout designed and laid-out by the UCR software.  

Automatic Identification of Ophthalmic Medication for The Visually Impaired

Researchers at UCI are developing technology that allows visually impaired patients to use their smartphones to take pictures of their eye medication/eye drop bottles. The technology will recognize the eye medication and verbally communicate the medication and will audibly confirm the medication along with the instructions on use.

Fast Deep Neural Network (DNN) Training/Execution on Hardware Platforms

With the growing range of applications for Deep Neural Networks (DNNs), the demand for higher accuracy has directly impacted the depth of the state-of-the-art models. Although deeper networks are shown to have higher accuracy, they suffer from drastically long training time and slow convergence speed with high computational complexity.

New Classes Of Cage And Polyhedron And New Classes Of Nanotube And Nanotube With Planar Faces

UCLA researchers have developed a novel algorithm that can be used to design unique self-assembled molecules and nanostructures.

Healthcare Hand Hygiene Medical Training Software

UCI researchers have developed a curriculum for training and evaluation of customers performing Healthcare Hand Hygiene.

Advanced Airway Management: Intubation medical Training Software

UCI researchers have developed a curriculum for training and evaluation of customers performing Advanced Airway Mangement: Intubation.

Method and Apparatus for Movement Therapy Gaming System

Rehabilitation therapy, while an important tool for the long term recovery of patients affected by brain injury or disease, is expensive and requires one-on-one attention from a certified healthcare professional. UCI researchers have developed a computer-based system that provides arm movement therapy for patients. The system allows patients to independently practice hand and arm movements, improving therapeutic outcomes, while reducing hospital visits and cost for both patients and healthcare providers.

Financial Model for Informing Value-Based Payment Decisions

Researchers led by David Johnson from the Department of Urologic Oncology and the West Los Angeles Veteran’s Affairs Medical Center have developed an interactive web platform that predicts the financial outcomes for various stakeholders (physicians, hospitals, and payers) of transitioning from fee-for-service to bundled payments for robotic radical prostatectomy.

System And Method For Binaural Spatial Processing Of Audio Signals

Audio signal processing is the intentional modification of sound signals to create an auditory effect for a listener to alter the perception of the temporal, spatial, pitch and/or volume aspects of the received sound. Audio signal processing can be performed in analog and/or digital domains by audio signal processing systems. For example, analog processing techniques can use circuitry to modify the electrical signals associated with the sound, whereas digital processing techniques can include algorithms to modify the digital representation, e.g., binary code, corresponding to the electrical signals associated with the sound.  Binaural sound recordings are produced by a stereo recording of two microphones inside the ears of a human or a mannequin head. Such recordings include most cues for sound spatialization detected by humans, and thus, they are able to realistically transmit the localization of the recorded sounds, and in effect provide a three dimensional experience of the soundscape for the listener.

AI Enabled UAV Route-Planning Algorithm with Applications to Search and Surveillance

Portable UAVs such as quad-copters have made huge inroads in the last several years in various fields of aerial photography and surveillance. Drones can efficiently and cheaply hover over/follow a target of interest and capture unique perspectives of wildlife, real-estate, sporting events and operational environments such as law enforcement or military. More challenging however is the application of UAVs for large area search and surveillance. In these scenarios, a search pattern must be established which can cover many square miles and is far too expansive for a UAVs typical battery to sustain. To make UAVs more broadly effective in large area search and target identification, new path planning algorithms are needed to efficiently eliminate areas of low probability while focusing on search areas most likely to contain the subject of interest. Likewise, improved image classifiers are needed to aid in separating targets of interest from background terrain, thus expediting the search within given battery limitations

Cloud- enabled Wireless pH Monitoring in Laboratory Sample Vials

A team of inventors at UCI have developed a miniaturized, wireless pH sensing system capable of monitoring the pH of laboratory samples in real-time with cloud-enabled connections for data collection. The sensor is designed to fit into the caps of standard sample vials, providing continuous measurements and eliminating the need to open vials during sensing.

Augmented Reality For Time-Delayed Telsurgical Robotics

Teleoperation brings the advantage of remote control and manipulation to distant locations or harsh or constrained environments. The system allows operators to send commands from a remote console, traditionally called a master device, to a robot, traditionally called a slave device, and offers synchronization of movements. This allows the remote user to operate as if on-site, making teleoperational systems an ideal and often only solution to a wide range of applications such as underwater exploration, space robotics, mobile robots, and telesurgery. The main technical challenge in realizing remote telesurgery (and similarly, all remote teleoperation) is the latency from the communication distance between the master and slave. This delay causes overshoot and oscillations in the commanded positions, and are observable and statistically significant in as little as 50msec of round trip communication delay. Predictive displays are virtual reality renderings, generally designed for space operations, that show a prediction of the events to follow in a short amount of time. It can be used to overcome the negative effects of delay by giving the operator immediate feedback from a predicted environment. Furthermore, it does not suffer stability issues that arise with delayed haptic feedback. Early predictive displays included manipulation of the Engineering Test Satellite 7 from ground control where the round trip delay can be up to 7sec and Augmented Reality (AR) rendering where the prediction is overlaid on raw image data. These strategies can be applied to telesurgery, but require overcoming the unique challenges in calculating and tracking the 3D environment for a full environment prediction, which includes non-rigid material such as tissue. Furthermore, prior work in the surgical robotics community highlights the need for active tracking rather than only relying on kinematic calibrations to localize the slave due to the millimeter scale of a surgical operation and the often utilized cable driven actuation.

DARTS: Deep Learning Augmented RNA-seq Analysis of Transcript Splicing

Researchers led by Yi Xing have developed a novel deep learning algorithm to detect alternative splicing patterns in RNA-seq data

System For Eliminating Clickbaiters On Visual-Centric Social Media

Researchers from the Department of Communication at UCLA have developed a system for identifying and eliminating clickbait from social media.

Source Tracking Though Spectral Matching To Mass Spec Databases

Modern metabolomics, proteomics and natural product datasets have now reached into the millions of tandem mass (MS/MS) spectra. The rapidly growing size of these datasets precludes laborious manual data interpretation of all of the data. While MS/MS spectral library search approaches match spectra in an automated fashion, the limited size of available spectral libraries limits identification rates of datasets to single digit percentages. In addition, the sharing of experimental MS/MS data between researchers is not that common. What is needed is a way to organize both identified and unidentified spectra into structurally related molecular families that is searchable.

Combination of a drug with low level light therapy (LLT) for treatment of wounds

This is a combination of a drug and light technology for the purpose of accelerating the healing of wounds on the skin, ulcers, and elsewhere in the body. Both methods have been shown to accelerate wound healing, and combining the two will potentially result in more rapid healing than either would alone.  

Multimodal food journaling

Researchers at UCI have developed a hands-free, unobtrusive smartphone-based application for automatic food journaling. The app, which operates via voice command, is interactive and highly engaging thereby encouraging long-term user participation.  

A Method To Determine Cause Of A Cardiac Arrest And Provide Cause-Specific Decision Support In Real-Time Using Continuous Electrocardiography

Researchers led by Duc Hong Do from the Department of Cardiology at UCLA have developed an algorithm to detect the cause of cardiac arrest in a hospital setting.

A New Human-Monitor Interface For Interpreting Clinical Images

UCLA researchers in the Department of Radiological Sciences have invented a novel interactive tool that can rapidly focus and zoom on a large number of images using eye tracking technology.

Machine-Learning-Based Denoising Of Doppler Ultrasound Blood Flow And Intracranial Pressure Signal

UCLA researchers in the Department of Neurosurgery have developed a novel framework to constrain noises in the measurements of vital physiological signals from neurosurgical patients.

Dicom/Pacs Compression Techniques

Researchers led by Xiao Hu from the Department of Surgery at UCLA have created a novel and convenient way to compress and query medical images from a PACS system.

A New Format For Representing And Encoding Images

Researchers in the Statistics and Computer Science Departments at UCLA have developed a method for image compression that is 5x more efficient than JPEG image coding.

Anamorphic Spectrum Transform And Its Application To Time-Bandwidth Compression

UCLA researchers in the Department of Electrical and Computer Engineering have developed an Anamorphic Spectrum Transformation (AST) scheme for compressing the time-bandwidth product of analog signals, making it easier to digitize wideband signals and to reduce the volume of the digital data generated.

  • Go to Page: