Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Other


[Search within category]

Using Vacuolar Na+/H+ Antiporters to Increase Salt Tolerance in Plants

Researchers at the University of California, Davis have developed a method that increases salt tolerance in plants. This method introduces a polynucleotide that encodes a Na+/H+ transporter polypeptide.

Expressing Multiple Genes From A Single Transcript In Algae And Plants

Green algae have been promoted as vehicles for the production of biofuels, pharmaceuticals, food additives, vaccines, and for toxic substance remediation, and many plants are the focus of efforts to produce drought tolerant, pest resistant, or more nutritious crops. Many of these engineering efforts rely on expression of multiple transgenes (e.g. in a multistep metabolic pathway to avoid accumulation of a toxic intermediate). It can also be useful to produce two or more proteins in a particular stoichiometry, as in a heterodimer that requires equimolar production of two polypeptides. Whether the goal is to express one transgene, or several, most efforts to transform plants and algae require cotransformation of the gene of interest with a selectable marker, such as a gene that confers resistance to a drug or herbicide, or complements an auxotrophy. Unfortunately, commonly used methods for co-transformation of algae and other plants are very inefficient. UC Berkeley investigators have developed a method for polycistronic gene expression,  and show how to achieve this using the organism's own sequences, without recourse to viral elements or other foreign elements, which is important for any technology where bioproducts are generated, since these may be used on humans (cosmetics) or in humans (food additives), especially crop technology.

A Fully Integrated Stretchable Sensor Arrays for Wearable Sign Language Translation To Voice

UCLA researchers in the Department of Bioengineering have developed a novel machine learning assisted wearable sensor system for the direct translation of sign language into voice with high performance.

Enhanced Block Copolymer Self-Assembly

Brief description not available

A novel method for increasing MHC presentation of oncogene derived neoantigens

The invention describes a platform technology that increases MHC presentation of oncogene derived peptide neoantigens that do not normally occur in the cell. The platform has already been used to identify a method of increasing KRAS G12 D/V derived peptide presentation on MHC- I.

Monoclonal Antibodies Specific to Canine PD-1 and PD-L1

Researchers at the University of California, Davis have developed monoclonal antibodies with multiple applications relevant to canine PD-1 and PD-L1.

Photocurable Poly(ethylene glycol) as a Bioink for the Inkjet 3D Pharming of Hydrophobic Drugs

UCLA researchers in the Department of Bioengineering have developed a novel inkjet 3D pharming technique that is fast, customizable, and compatible with hydrophobic drugs.

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Deep Learning of Biomimetic Sensorimotor Control for Biomechanical Human Animation

UCLA researchers from the Department of Computer Science have developed a computer simulation model and associated software system for biomimetic human sensorimotor control.

Mechanisms and Devices Enabling Arbitrarily Shaped, Deep-Subwavelength, Acoustic Patterning

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a Compliant Membrane Acoustic Patterning (CAMP) technology capable of patterning cells in an arbitrary pattern at a high resolution over a large area.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

A New Cell-free Protein Expression System with three-fold higher protein yield in batch and continuous mode than existing systems

Researchers at the University of California, Davis have developed a method for preparing a bacterial cell lysate that results in higher protein expression than existing cell-free systems. The new whole-cell lysate system comes with additional advantages, including the ability to synthesize protein from linear DNA, directly amenable to continuous or flow-based reaction, and compatibility with existing manufacturing workflow.

Titanium Implants with Novel Roughness

UCLA researchers in the School of Dentistry at the Weintraub Center for Reconstructive Biology have developed a novel titanium implant with hierarchical multi-scale roughness to promote bone growth.

Novel Adjustable Caliber Catheter System

UCLA researchers in the Department of Radiological Sciences have designed a new adjustable catheter system for use in embolectomy or thrombectomy procedures.

Use of Machine Learning to Predict Non-Diagnostic Home Sleep Apnea Tests

Researchers led by Robert Stretch from the Division of Pulmonary, Critical Care & Sleep Medicine at UCLA have developed an algorithm that can predict whether a patient will have a non-diagnostic home sleep apnea test based upon data from the electronic health record and a brief questionnaire.

Rheological Tuning of the Crystal Growth

Solutions of shear-thinning polymers are known to decrease in viscosity as a shear force is applied to the solution. In this work, the inventors show that by pre-shearing a shear-thinning polymer solution mixed with a precursor solution of a semiconducting crystal we can tune the size and morphology of the growing crystals, which governs the optoelectronic properties of the formed crystals. By pre-shearing the solution we are able to lower the viscosity of the solution, which plays a key role in the liquid phase processing (eg., coating processes). By forming a thinner, low-viscosity coating, we are able to tune the nucleation and growth rate of the crystals to form crystals that are smaller and more uniformly distributed in size, leading to a uniform and conformal coating. This approach allows us to coat a uniform layer of semiconducting crystals, which is necessary for developing functional optoelectronic devices.

Enzymatic Modification Of Amino Acids And Their Products

The inventors report the structural characterization of BesD, a recently discovered radical halogenase from the FeII/-ketogluturate family that chlorinates the free amino acid lysine. They also identify and characterize additional halogenases that produce mono- and di-chlorinated as well as brominated and azidated amino acids. The substrate selectivity of this new family of radical halogenases takes advantage of the central role of amino acids in metabolism and enables engineering biosynthetic pathways to afford a wide variety of compound classes, such as heterocycles, diamines, -keto acids, and peptides. 

Financial Model for Informing Value-Based Payment Decisions

Researchers led by David Johnson from the Department of Urologic Oncology and the West Los Angeles Veteran’s Affairs Medical Center have developed an interactive web platform that predicts the financial outcomes for various stakeholders (physicians, hospitals, and payers) of transitioning from fee-for-service to bundled payments for robotic radical prostatectomy.

A Built-In Mechanism Of Gas Maintenance In Microfeatures On A Submerged Surface

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel superhydrophobic surface for drag reduction and anti-biofouling applications.

Microfluidics Device and Methods of Detecting Airborne Agents

A microfluidic platform for real time sensing of volatile airborne agents.

Electrical Charge Balancing Scheme For Functional Stimulation Using Pulse Width Compensation

UCLA researchers in the Department of Bioengineering have developed a novel electrical charge cancellation scheme to effectively remove residual charge on an electrode, achieving greater precision for lesser hardware cost, while maintaining a surgically implantable small size without extra pulse insertion.

A Method To Determine Cause Of A Cardiac Arrest And Provide Cause-Specific Decision Support In Real-Time Using Continuous Electrocardiography

Researchers led by Duc Hong Do from the Department of Cardiology at UCLA have developed an algorithm to detect the cause of cardiac arrest in a hospital setting.

Generic Method for Controlled Assembly of Molecules

Researchers at the University of California, Davis, in collaboration with researchers at IBM, have developed a widely applicable method to assemble molecules regardless of their intrinsic self-assembly properties.

A New Human-Monitor Interface For Interpreting Clinical Images

UCLA researchers in the Department of Radiological Sciences have invented a novel interactive tool that can rapidly focus and zoom on a large number of images using eye tracking technology.

  • Go to Page: