Browse Category: Biotechnology > Other

Categories

[Search within category]

Alpha1–2-Fucosyltransferase for Enzymatic Synthesis of Alpha1–2-linked Fucosylated Glycans

Researchers at the University of California, Davis have discovered an alpha1–2-fucosyltransferase that efficiently catalyzes the synthesis of alpha1–2-linked fucosylated glycans that can contain different internal glycans.

Organic Waste Material Treatment

A researcher at the University of California, Davis has developed a method for treating organic waste materials.

Therapeutic Vaccine for Chronic Hepatitis B (CHB)

Researchers at the University of California, Davis have developed a therapeutic vaccine capsule against Chronic hepatitis B.

Transabdominal Fetal Blood Oximetry

Researchers at the University of California, Davis have developed a method and apparatus for clinical-grade transabdominal fetal blood oximetry.

Genetically Encoded Fluorescent Sensors for Probing the Action of G-Protein Coupled Receptors (GPCRs)

Researchers at the University of California, Davis have developed a genetically encoded fluorescent sensor toolbox for the probing of G-protein coupled receptors.

Culturing More Mature iPSC-derived Cardiac Myocytes

Researchers at the University of California, Davis have developed a non-genetic, non-pharmacological method for culturing more mature induced pluripotent stem cell-derived cardiac myocytes.

Stationary X-Ray Source

Researchers at the University of California, Davis have developed an integrated method of providing a long lived, high output stationary X-ray source.

Nanowire Building Block

Nanowires have applications as transistors or bioelectronic devices. Current methods to synthesize nanowires lack the ability to precisely control length, sequence, and terminal functionality. Using this invention as a building block, organic nanowires can be made with controlled length, sequence, and terminal functionality. The organic nanowires made with this invention also exhibit zero-resistance and do not degrade with increased length.

Soluble Fluorescent DNA Label

Assays or biosensors that utilize electrochemical or fluorescent techniques often employ DNA electrochemical probes. Current probes have drawbacks, as they have either electronic or fluorescent properties, are not readily water-soluble, and are poorly coupled within a DNA strand. This invention is a DNA electrochemical probe that has both electronic and fluorescent properties, is water-soluble, and can readily incorporate into a DNA strand.

Ligands for Improved Angiogenesis and Endothelialization of Blood Contacting Devices

Researchers at the University of California, Davis have discovered novel targeting ligands that can specifically bind and capture endothelial cells and endothelial progenitors for improved endothelialization and angiogenesis of medical devices and scaffolds.

Novel Solid Tumor Chemodrug LLS2

Researchers at the University of California, Davis have developed a new library of small molecule LLS2 that can kill a variety of cancer cells

Novel Applicator Using FTA Paper to Collect Touch DNA

Researchers at the University of California, Davis have developed a novel approach to an applicator designed to expedite and increase the efficiency of the DNA collection process at crime scenes.

Growth-Factor Nanocapsules With Tunable Release Capability For Bone Regeneration

UCLA researchers in the Departments of Chemical Engineering and Orthopedic Surgery have developed a method to deliver therapeutic proteins directly to the tumor site using nanocapsules.

Protein Nanocapsules With Detachable Zwitterionic Coating For Protein Delivery

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a method to deliver therapeutic proteins directly to the tumor site using nanocapsules.

Rapid And Selective Cycloaddition Reaction For Applications In Molecular Imaging

UCLA researchers in the Department of Molecular and Medical Pharmacology, and Department of Chemistry and Biochemistry have designed a new reaction with 18F-chemistry platform, allowing a highly selective, efficient and rapid approach to label biomolecules with a chemical reporter (i.e. radionuclide, fluorescent dye) for molecular imaging.

New Method to Increase the Rate of Protein Ligation Catalyzed by the S. Aureus Sortase A Enzyme

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to increase the rate of ligation catalyzed by the S. aureus Sortase A enzyme

Paramagnetic Polymers for Improved Magnetic Resonance Imaging

A method using anions containing transition or rare-earth metals to provide paramagnetic functionality to polymers making them useful in magnet resonance imaging.

New label-free method for direct RNase activity detection in biological samples

Researchers at the University of California, Davis have developed a new and simple, label-free method to detect milligram levels of RNase activity in undiluted biological samples that is selective, accurate and scalable

Graphene-Based Sensors For Mitochondrial Functions

One of the key identifiers of cancer is an interruption in normal cellular life cycles, including pre-programmed cell death. Researchers at UCI have recently developed a method to monitor this cell death via graphene-based sensors which provide increased accuracy and allow for a higher degree of cancer treatment personalization over traditional techniques.

SIMPLE AND RAPID METHOD FOR QUANTIFICATION OF HALOGINATED DISACCHARIDES, SUCH AS SUCRALOSE, IN AQUEOUS MEDIA

Sucralose has become widely used as an artificial sweetener due in large part that it has low caloric content and is 600 times sweeter than table sugar (sucrose). Due to its resistance to metabolic degradation, sucralose can also be used as a marker for noninvasively assessing gastrointestinal small intestine or colonic permeability. This urinary marker is traditionally analyzed by time consuming and expensive methods, such as high performance liquid chromatography coupled to mass spectrometry or evaporative light scatter as the detectors. We have developed an alternative methodology of using a chemical-fluorescent technique for rapid analysis of halogenated disaccharides, such as sucralose.

Production of Glycolipid PEFAs from Yeasts

Method of using basidiomycetous yeasts to convert carbohydrates to glycolipid biosurfactants 

Building blocks for 3D, modular microfluidics

Researchers at the University of CA, Irvine have developed modular microfluidic platforms consisting of microfluidic building blocks that can be connected in various configurations to construct complete microfluidic devices for different applications.

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Dual-Labeled E-AB Platform for Continuous, Real-Time Monitoring of Small Molecules

A dual-reporter correction to enhance the performance of electrochemical aptamer-based sensors in whole blood.

Method For Imaging Neurotransmitters In Vitro and In Vivo Using Functionalized Carbon Nanotubes

Neurotransmitters play a central role in complex neural networks by serving as chemical units of neuronal communication.  Quantitative optical methods for the detection of changes in neurotransmitter levels has the potential to profoundly increase our understanding of how the brain works. Therapeutic drugs that target neurotransmitter release are used ubiquitously to treat a vast array of brain and behavioral disorders.  For example, new methods in this sphere could provide a new platform by which to validate the function of drugs that alter modulatory neurotransmission, or to screen antipsychotic and antidepressant drugs.  However, currently in neuroscience, few optical methods exist that can detect neurotransmitters with high spatial and temporal resolution in vitro or in vivo.  Brain tissue also readily scatters visible wavelengths of light currently used to perform biological imaging, and neuronal tissue and has an abundance of biomolecules that are chemically or structurally similar and therefore hard to specifically distinguish.  Furthermore, neurotransmission relevant processes occur at challenging spatial  and temporal scales.    UC Berkeley investigators have developed polymer-functionalized carbon nanotubes for in vitro and in vivo quantification of extracellular modulatory neurotransmitter levels using optical detectors. The method uses the fluorescent optical properties of polymer-functionalized carbon nanotubes to selectively report changes in concentration of specific neurotransmitters. The scheme is novel in that the detection method applies to wide variety of specific neurotransmitters, it is an optical method and therefore gives greater spatial information, and enables the potential for imaging of one or more neurotransmitters. The optical method also produces less damage to the surrounding tissue than methods that implant electrodes or cells and allows high resolution localization with other methods of optical investigation. The invention takes advantage of favorable fluorescence properties of carbon nanotubes, such as carbon nanotube emission in the near infrared and infinite fluorescence lifetime.  The near infrared emission scatters less than shorter wavelengths, enabling greater signal recovery from deeper tissue, and allows greater compatibility with other techniques. The optical properties also enable long term potentially even chronic use. 

  • Go to Page: