Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Position sensors

Categories

[Search within category]

Plant-Specific and Agricultural Field/Orchard/Crop Optimization Using Aerial Image Processing

Researchers at the University of California, Davis have developed a system that combines large datasets of aerial imagery with artificial intelligence to acquire per-plant analytics and predict crop yields. The system is a scalable per-tree yield prediction model for nut crops, provides large-scale canopy profile analytics in 3D, and the next generation of aerial image analytics for agriculture.

Low-Cost, Multi-Wavelength, Camera System that Incorporates Artificial Intelligence for Precision Positioning

Researchers at the University of California, Davis have developed a system consisting of cameras and multi-wavelength lasers that is capable of precisely locating and inspecting items.

(SD2019-307) Autonomous Millimeter Accurate Mapping of WiFi Infrastructure AND Reverse Localization of COTS WiFi Access Points

Indoor localization has been studied for nearly two decades fueled by wide interest in indoor navigation, achieving the necessary decimeter-level accuracy. However, there are no real-world deployments of WiFi-based user localization algorithms, primarily because these algorithms are infrastructure dependent and therefore assume the location of the Access Points, their antenna geometries, and deployment orientations in the physical map. In the real world, such detailed knowledge of the location attributes of the access point is seldom available, thereby making WiFi localization hard to deploy.   Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Location services, fundamentally, rely on two components: a mapping system and a positioning system. The mapping system provides context, and the positioning system identifies the position within the map. Outdoor location services have thrived over the last couple of decades because of wellestablished platforms for both these components (e.g. Google Maps for mapping, and GPS for positioning). In contrast, indoor location services haven’t caught up because of the lack of reliable mapping and positioning frameworks (and lack of integration between the two). SLAM methods construct maps that aren’t tagged with locations. Wi-Fi positioning lacks maps, and is also prone to environmental errors. In contrast, indoor navigation even with significant interest from industry and academia lacks further behind.  We cannot use our smartphone to navigate to a conference room in a new building or to find a product of interest in a shopping mall. The primary reason for the poor indoor navigation system is the unavailability of indoor localization augmented maps and floor plans. On one hand, Google and a few other providers make indoor floor plans for airports, malls, and famous buildings, those floor-plans have to be created manually and often need to updated as floor plans change and they lack details such as the position of furniture and other obstacles. On the other hand, besides mapping, ability to position users’ location on these indoor maps is necessary for indoor navigation  

Dynamic Target Ranging With Multi-Tone Continuous Wave Lidar Using Phase Algorithm

Researchers at the University of California, Irvine have developed a novel algorithm that is designed to be integrated with current multi-tone continuous wave (MTCW) lidar technology in order to enhance the capability of lidar to acquire range(distance) of fast-moving targets as well as simultaneous velocimetry measurements.

Precision Gyroscope Mode-Matching Insensitive To Rate Input

There is a wide range of applications for gyroscopes, including: inertial navigation, stabilization, maintaining direction. Many of these applications require low noise. One approach to reducing noise is to increase the mass of the gyroscope transducer. However, this generally comes with increased size and cost. Mode-matched gyroscopes avoid these penalties. These gyroscopes are based on transducers with high quality factor Q. Provided that the resonance frequencies of the drive and sense axes are equal, the noise is suppressed by the quality factor Q. The Q-factor of typical gyroscopes ranges from 1000 to several million, offering dramatic noise reduction. The required precision of mode-matching, which is on the order of 1/Q, presents an implementation challenge. For example, in a mode-matched gyroscope with Q=106, the relative deviation of the frequencies of oscillation of the drive and sense mode must be 10 6. This level of precision is not attainable by typical transducer fabrication techniques such as MEMS or trimming.This innovation presents an alternative approach for continuously monitoring the split between the resonances of the drive and sense modes. While also based on a periodic calibration signal, it does not suffer from corruption of or from the rate measurement. Consequently, the frequency of the calibration signal can be chosen independently of the bandwidth of the rate input and instead set by the required tracking bandwidth of the mode split estimate. The latter is typically dominated by environmental variations such as temperature and on the order of 1Hz or less in typical implementations.

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

A Fully Integrated Stretchable Sensor Arrays for Wearable Sign Language Translation To Voice

UCLA researchers in the Department of Bioengineering have developed a novel machine learning assisted wearable sensor system for the direct translation of sign language into voice with high performance.

Vibration Sensing and Long-Distance Sounding with THz Waves

UCLA researchers in the Department of Electrical and Computer Engineering have developed a terahertz (THz) detector that utilizes the micro-Doppler effect to detect vibrations and long-distance sounds.

THz Impulse and Frequency Comb Generation Using Reverse Recovery of PIN Diode

UCLA researchers in the Department of Electrical and Computer Engineering have developed an antenna design procedure that can realize devices with beam scanning at a fixed frequency on a single element antenna.

Dual-Shell Fused Quartz Resonators and Method of Fabrication

UCI researchers developed a sturdy architecture and straightforward fabrication procedure for the core sensing element in microscale gyroscopes for timing and inertial navigation applications.

Transmitter Localization Without Clock Synchronization

Determining the location of a transmitting party in a communication network normally requires a number of identifying factors. The transmitting party can be located through triangulating their signal, using the signal’s arrival at several receivers to determine the transmission’s origin. One can also determine the location of a receiver by comparing the receipt of multiple transmitter signals; however, in both scenarios the transmitter and receiver must employ clock synchronization and signal time-of-travel information to accurately compute relative localization between the two.   The Global Positioning System is a well-known example of this process, leveraging known time (and synchronizing to that time) and position of each GPS satellite to deduce the location of a receiver.  

Augmented Reality For Time-Delayed Telsurgical Robotics

Teleoperation brings the advantage of remote control and manipulation to distant locations or harsh or constrained environments. The system allows operators to send commands from a remote console, traditionally called a master device, to a robot, traditionally called a slave device, and offers synchronization of movements. This allows the remote user to operate as if on-site, making teleoperational systems an ideal and often only solution to a wide range of applications such as underwater exploration, space robotics, mobile robots, and telesurgery. The main technical challenge in realizing remote telesurgery (and similarly, all remote teleoperation) is the latency from the communication distance between the master and slave. This delay causes overshoot and oscillations in the commanded positions, and are observable and statistically significant in as little as 50msec of round trip communication delay. Predictive displays are virtual reality renderings, generally designed for space operations, that show a prediction of the events to follow in a short amount of time. It can be used to overcome the negative effects of delay by giving the operator immediate feedback from a predicted environment. Furthermore, it does not suffer stability issues that arise with delayed haptic feedback. Early predictive displays included manipulation of the Engineering Test Satellite 7 from ground control where the round trip delay can be up to 7sec and Augmented Reality (AR) rendering where the prediction is overlaid on raw image data. These strategies can be applied to telesurgery, but require overcoming the unique challenges in calculating and tracking the 3D environment for a full environment prediction, which includes non-rigid material such as tissue. Furthermore, prior work in the surgical robotics community highlights the need for active tracking rather than only relying on kinematic calibrations to localize the slave due to the millimeter scale of a surgical operation and the often utilized cable driven actuation.

Multi-Tone Continuous Wave LIDAR

Object detection and ranging is a fundamental task for several applications such as autonomous vehicles, atmospheric observations, 3D imaging, topography and mapping. UCI researchers have developed a light detection and ranging (LIDAR) system which makes use of frequency modulated continuous waves (FMCW) with several simultaneous radiofrequency tones for improved speed of measurement while maintaining robust spatial information. 

Magnetoresistance Sensor With Perpendicular Anisotropy

UCLA researchers in the Department of Electrical Engineering have invented a novel magnetic sensor design that is highly sensitive and linear, with tunable response and low power consumption.

Actively Controlled Microarchitectures with Programmable Bulk Material Properties

Professor Jonathan Hopkins and colleagues have developed amechanical programmable metamaterial consisting of an array of actively, independently controlled micro-scale unit cells. This technology allows for the application of materials which have instantly changeable, programmable properties that can exceed those of conventional, existing materials.

Spectro-Temporal Lidar

UCLA researchers in the Department of Electrical and Computer Engineering have developed a LIDAR sensor that collects high frame-rate 3D measurements for autonomous vehicle and robotics applications.

Unsupervised WiFi-Enabled Device-User Association for Personalized Location-Based Services

With the emergence of the Internet of Things in smart homes and buildings, determining the identity and mobility of people are key to realizing personalized, context-aware and location-based services - such as adjusting lights and temperature as well as setting preferences of electronic devices in the vicinity. Conventional electronic user identification approaches either require proactive cooperation by users or deployment of dedicated infrastructure. Consequently, existing approaches are intrusive, inconvenient, or expensive to ubiquitously implement. For example: biometric identification requires specific hardware and physical interaction; and vision-based (video) approaches need favorable lighting and introduce privacy issues. To address this situation, researchers at UC Berkeley developed an identification system that uses existing, pervasive WiFi infrastructure and users' WiFi-enabled devices. The innovative Berkeley technology cleverly leverages attributes such as the MAC address and RSS of users' WiFi-enabled devices. Furthermore, the Berkeley approach is facilitated by an unsupervised learning scheme that maps each user identification with associated WiFi-enabled devices. This technology could serve as a vital underpinning for practical personalized context-aware and location-based services in the era of the Internet of Things.

Single-Pixel Optical Technologies For Instantly Quantifying Multicellular Response Profiles

UCLA researchers in the Department of Mechanical & Aerospace Engineering and the Department of Pathology & Lab Medicine have proposed a new platform technology to actuate and sense force propagation in real-time for large sheets of cells.

A simple, accurate and inexpensive device pointing system using head tilt gesturing

Current device pointing systems, which control the movement of cursors on screens, suffer from several drawbacks which often preclude their use by individuals with special needs or medical conditions. This UCI invention describes a simple, inexpensive “head mouse” that, in combination with proprietary software, tracks the position of the head relative to the body, allowing for full control of a pointing device.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Ultra-High Resolution Multi-Platform Heterodyne Optical Imaging

Researchers at the University of California, Davis have developed a new technique for achieving ultra-high resolution heterodyne synthetic imaging across multiple platforms (e.g. multiple satellites) using optical frequency comb sources.

Axi-Symmetric Small-Footprint Gyroscope With Interchangeable Whole-Angle And Rate Operation

The invention is a compact, degenerate mode gyroscope capable of achieving high Q-factor in both whole-angle and rate operation modes.

Methods of Self-Calibration for Coriolis Vibratory Gyroscopes

The levels of long-term instabilities in bias and scale factor are key characteristics for the utilization of gyroscopes in many practical applications in navigation, positioning, and targeting systems. The inventors at UCI have developed two methods for gyroscope calibration: 1) Utilizing the mechanical quadrature error and 2) Utilizing the voltages of amplitude gain control (AGC) of the drive-mode. The new methods have been combined with feedback signals from a third technique, Side-Band Ratio (SBR) detection, to produce bias stability of 0.1 deg/hr after 300 seconds that is maintained for over 3 hours.

Method of simultaneously and directly generating an angular position and angular velocity measurement in a micromachined gyroscope

The invention is in the field of MEMS gyroscopes capable of simultaneous measurement of angular position and angular rate. A sensor is fabricated with micron feature sizes capable of simultaneously measuring absolute angles of rotation and angular rotational rates. The measurements are made directly from the position and velocity of the device without the need for electronic integration or differentiation. The device measures angle directly, avoiding the integration of electronic errors and allowing for higher performance in attitude measurement. These performance improvements and flexibility in usage allow for long term attitude sensing applications such as implantable prosthetics, micro-vehicle navigation, structural health monitoring, and long range smart munitions. Through the fabrication of the device using lithographic methods, the device can be made small and in large qualities, resulting in low costs and low power consumption.

Robust Six Degree-Of-Freedom Micromachined Gyroscope With Anti-Phase Drive Scheme

The invention relates to the field of micromachined gyroscopes and accelerometers, and in particular to designs for anti-phase devices to compensate for fabrication and environmental variations. A method of operating an anti-phase six degree-of-freedom tuning fork gyroscope system comprises the steps of driving a first three degree-of-freedom gyroscope subsystem, and driving a second three degree-of freedom gyroscope subsystem in an anti-phase mode with the first gyroscope subsystem at an anti-phase resonant frequency. Acceleration or an angular rate of motion is sensed by the first and second three degree-of-freedom gyroscope subsystems operating in a flat frequency response range where the anti-phase resonant frequency is designed. Response gain and phase are stable and environmental and fabrication perturbations are avoided by such operation. A anti-phase six degree-of-freedom tuning fork gyroscope system which operates as described is also characterized.

  • Go to Page: