Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Security and Defense > Other


[Search within category]

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Self-Adaptive Architected Materials for Selective Damping of High Amplitude Sounds

Researchers in the UCLA Department of Mechanical and Aerospace Engineering and Department of Electrical and Computer Engineering have developed a responsive hearing protection system that uses self-adaptive architected materials that selectively dampens high amplitude, damaging sounds.

Nanoparticles-Enabled Casting of Bulk Ultrafine Grained/Nanocrystalline Metals

UCLA researchers in the Department of Mechanical and Aerospace engineering have fabricated bulk, thermally stable ultrafine grained/nanocrystalline metals using conventional casting techniques.

AI Enabled UAV Route-Planning Algorithm with Applications to Search and Surveillance

Portable UAVs such as quad-copters have made huge inroads in the last several years in various fields of aerial photography and surveillance. Drones can efficiently and cheaply hover over/follow a target of interest and capture unique perspectives of wildlife, real-estate, sporting events and operational environments such as law enforcement or military. More challenging however is the application of UAVs for large area search and surveillance. In these scenarios, a search pattern must be established which can cover many square miles and is far too expansive for a UAVs typical battery to sustain. To make UAVs more broadly effective in large area search and target identification, new path planning algorithms are needed to efficiently eliminate areas of low probability while focusing on search areas most likely to contain the subject of interest. Likewise, improved image classifiers are needed to aid in separating targets of interest from background terrain, thus expediting the search within given battery limitations

Microfluidics Device and Methods of Detecting Airborne Agents

A microfluidic platform for real time sensing of volatile airborne agents.

Cephalopod-Inspired Adaptive Infrared Camouflage Materials and Systems

This technology is a new class of materials capable of thermal regulation and active camouflage. These cephalopod-inspired materials, configurable to different geometries, can be used in many sectors, ranging from consumer to industrial to military applications.

Techniques for Creation and Insertion of Test Points for Malicious Circuitry Detection

Researchers led by Dr. Potkonjak from the UCLA Department of Computer Science have developed a technique to detect hardware Trojans in integrated circuits.

Actively Controlled Microarchitectures with Programmable Bulk Material Properties

Professor Jonathan Hopkins and colleagues have developed amechanical programmable metamaterial consisting of an array of actively, independently controlled micro-scale unit cells. This technology allows for the application of materials which have instantly changeable, programmable properties that can exceed those of conventional, existing materials.

Polarization mode dispersion-based physical layer key generation for optical fiber link security

Researchers at UCI have developed a novel method for encrypting optical communications, which is simpler, less expensive, and less computationally-demanding than standard solutions.

Synthesis of Nanocrystalline Iron Nitrides Using Two-Step Reactive Milling Process

Nanocrystalline iron nitride is an important soft magnetic material; however, conventional methods of production don’t exist. Synthesis of dense nanocrystalline iron nitrides is not possible by simply annealing elemental iron in NH3 at temperatures in excess of 600° C since g’-Fe4N and other iron nitrides are unstable above 600°C and will decompose. Sandia researchers have discovered that by using a two-step reactive milling process and high pressure spark plasma sintering (SPS) they can quickly and efficiently fabricate bulk g’-Fe4N parts.

Device-Free Human Identification System

In our electronically connected society, human identification systems are critical to secure authentication, and also enabling for tailored services to individuals. Conventional human identification systems, such as biometric-based or vision-based approaches, require either the deployment of dedicated infrastructure, or the active cooperation of users to carry devices. Consequently, pervasive implementation of conventional human identification systems is expensive, inconvenient, or intrusive to privacy. Recently, WiFi infrastructure, and associated WiFi-enabled mobile and IoT devices have become ubiquitous, and correspondingly, have enabled many context-aware and location-based services. To address the challenges of human identification systems and take advantage of the popularity of WiFi, researchers at UC Berkeley developed a human identification system based on analyzing signals from existing WiFi-enabled devices. This novel device-free approach uses WiFi signal analysis to reveal the unique, fine-grained gait patterns of individuals as the "fingerprint" for human identification.

Efficient UAV Flight Mechanism with Vertical Take-Off and Landing (VTOL) Capability

Researchers at the University of California, Davis have developed a new flight mechanism that offers vertical take-off and landing (VTOL) capability and cruising speeds comparable with fixed wing unmanned aerial vehicles (UAV).

GPS-Based Miniature Oceanographic Wave Measuring Buoy System

Oceanic monitoring helps coastal communities, economies, and ecosystems thrive. The coastlines and open oceans prove to be very important to maritime countries for recreation, mineral and energy exploitation, shipping, weather forecasting and national security. As solar power, GPS, and telecomm improvements have been made, directional wave buoys have emerged and set the standard in wave monitoring. Non-directional and directional wave measurements are of high interest to users because of the importance of wave monitoring for successful marine operations. Wave data and climatological information derived from the data are also used for a variety of engineering and scientific applications.

Defending Side Channel Attack In Additive Layer Manufacturing Systems

Additive layer manufacturing systems, also known as 3D printers, are a powerful tool for manufacturers in both rapid prototyping stage and full-scale production. Sensitive intellectual property is carried in the electronic information of the design files utilized by 3D printers. However, the physical characteristics of the machine in operation, including power, temperature, sounds, and motion can also reveal sensitive information that could be used to reverse-engineer a product. The inventors at UCI have demonstrated the threat posed by such side-channel attacks, and have developed countermeasures that obscure information which would otherwise be exposed during printer operation.

A Cavity-Free Self-Referencing Frequency Comb

A self-referencing frequency comb based on high-order sideband generation (HSG) that does not require cavities. Applications include "set-and-forget" optical atomic clocks and high-resolution spectrometers for airborne chemicals.

A vaccination strategy against Chlamydia and other sexually transmitted diseases

No vaccines exist against the common sexually-transmitted disease, Chlamydia. The current invention is a novel vaccination formulation wherein fragments from two different microbial proteins, one each from a Chlamydia species and a Neisseria species are fused together. This novel fusion protein is proposed as a robust vaccine to provide protection against Chlamydia.

Unipolar Light Emitting Devices On Silicon Based Substrates

A process that provides a less expensive alternative for growing light emitting material compared to growing on lattice matched native III-V substrates.

Enhancing Mechanical Properties of Nanostructured Materials with Interfacial Films

Nanostructured materials are a category of materials comprised of nanometer-scale crystals which exhibit order of magnitude higher strength when compared to their traditional counterparts with larger crystal sizes. The application of nanostructured materials has been limited due to seemingly inherent low ductility and high-temperature instability. The inventors at UCI have developed a nanostructured material that simultaneously exhibits increased ductility, strength, and thermal stability by the incorporation of amorphous intergranular films.

Supersonic Thrust Vector Control for Jet Engines Using Staggered Flaps

Researchers at the University of California, Davis have developed a novel mechanism for vectoring the thrust of supersonic, air-breathing jet engines for aircraft applications.

Frequency Reference For Crystal Free Radio

Wireless sensors and the Internet of Things (IoT) have the potential to greatly impact society. Millimeter-scale wireless microsystems are the foundation of this vision. Accordingly, to realize this potential, these microsystems must be extremely low-cost and energy autonomous. Integrating wireless sensing systems on a single silicon chip with zero external components is a key advancement toward achieving those cost and energy requirements.  Almost all commercial microsystems today use off-chip quartz technology for precise timing and frequency reference. The quartz crystal (XTAL) is a bulky off-chip component that puts a size limitation on miniaturization and adds to the cost of the microsystem. Alternatively, MEMS technology is showing promising results for replacing the XTAL in space-constrained applications. However, the MEMS approach still requires an off-chip frequency reference and the resulting packaging adds to the cost of the microsystem.  To achieve a single-chip solution, researchers at UC Berkeley developed: (1) an approach to calibrating the frequency of an on-chip inaccurate relaxation oscillator such that it can be used as an accurate frequency reference for low-power, crystal-free wireless communications; and (2) a novel ultra-low power radio architecture that leverages the inaccurate on-chip oscillator, operates on energy harvesting, and meets the 1% packet error rate specification of the IEEE 802.15.4 standard. 

A Video Based Hierarchical Vehicle Classification System

Background: Transportation and vehicle classification systems are becoming smarter and more automated. For example, electronic toll collection systems have been introduced and drivers are not required to stop, eliminating road delays. New technologies have also been added to these systems that enable service providers to acquire data on what type of vehicles are utilizing their amenities as well as vehicle identification for safety & control purposes.  Brief Description: UCR Researchers have developed a method and system for vehicle classification using video imaging. This novel invention entails a vehicle ground clearance measurement system along with a video camera that captures a travelling vehicle and categorizes it into a vehicle class. The cameras on current methods and systems rely on side views of the vehicle, which can easily be obstructed by other vehicles.

Lockout Tagout Software

Energy Isolation Lock out Tag out (“LOTO”) is a series of CalOSHA and FedOSHA code compliance requirements and is the primary means by which equipment must be rendered “safe” prior to allowing personnel to work on the equipment.  LOTO codes require equipment-specific written procedures identifying all types of energy sources needed to operate the equipment as well as the energy-isolation methods and locations of utility disconnects, stored energy, etc. In addition, every LOTO procedure must be annually verified to confirm the written procedure is still accurate to the equipment.   Whereas current LOTO procedures are typically hand-written or using other time-consuming processes, UC Berkeley authors have created software allowing users to retrieve LOTO procedures in real-time guiding the end-user through a logical thought process to allow them to identify all energy sources and safety processes, and equipment needed.  

Active topical skin protectants using hybrid organic polysilsesquioxane materials

A topical skin protectant formulation containing a barrier cream and an active hybrid organic-inorganic polysilsesquioxane material for protecting warfighters and civilians against all types of harmful chemicals, specifically chemical warfare agents (CWAs).

Human Butyrylcholinesterase and Acetylcholinesterase Based Catalytic Bioscavengers of Organophosphates

Exposure to organophosphates (OP) from both pesticides and nerve agents leads to inhibition of acetylcholinesterase (AChE), resulting in a build-up of acetylcholine in the body, and potentially death. The only OP stoichiometric bioscavenger in use today is butyrylcholinesterase (hBChE). Human butylcholinesterase (hBChE) specifically and efficiently captures offending OP molecules in the circulation of exposed individuals, sequestering the OP as an inactive conjugate in the plasma.

  • Go to Page: