Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Research Tools > Screening Assays

Categories

[Search within category]

Stamping-based Method for Microwell Production and Cell Aggregate Formation

Researchers at the University of California, Davis have developed a 3-D printed stamping system (the “Aggrestamp”) with the capability for in-situ production of microwells that facilitate cell aggregate formation.

Systems and Methods for Monodisperse Drop Generation and Use

UCLA researchers in the Department of Bioengineering have developed systems and methods to produce single particle, monodisperse droplets for use in digital assays, targeted drug delivery, and theranostics.

A Microfluidic Single-Cell Pairing Array for Studying Cell-Cell Interaction in Isolated Compartments

Cell interactions are fundamental to biological processes. Microfluidics provides a reliable platform to study these intricate phenomena. The researchers have developed a microfluidic trapping array which efficiently pairs single cells in isolated compartments in an easy to operate manner to study cell-cell interaction, especially at single-cell level.

Tunable, Sheathless, and Three Dimensional Single-Stream Cell Focusing in High Speed Flows

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a tunable, sheathless, and three dimensional single-stream cell focusing in high speed flows. This new mechanism can be used for real-time focusing in flow cytometers and high-throughput cell sorting.

Antibody and Vaccine Therapy for C. diff. Infection

Clostridium difficile (C. diff.) infection is estimated to cause nearly 0.5 million illnesses in the US. C. diff. can cause severe gastrointestinal effects, including life-threatening inflammation, is contagious, and is an urgent antibiotic-resistant threat, according to the Centers for Disease Control and Prevention. UCI researchers have determined the crystal structure for the virulent C. diff. toxin, TcdB, and characterized sites to target for neutralization along with immunogens that can be used in vaccine strategies to prevent and treat C. diff. infection.

The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel use of the cryogenic electron microscopy (CryoEM) method electron micro-diffraction (MicroED) to provide routine and unambiguous structural determination of small organic molecules.

Drug Repurposing To Explore Novel Treatment For Cushing Disease

UCLA researchers in the Department of Medicine and the Department of Molecular and Medicinal Pharmacology have identified several small molecule reagents to treat Cushing disease.

Novel Fret Method

Dr. Jiayu Liao and colleagues at the University of California, Riverside have developed a FRET assay using nitrobenzoxadiazole (NBD) and coumarin (CUM) amino acid analogs as a FRET pair.  These fluorophores are genetically encoded into peptides and proteins surrounding a protease cleavage site or ligand binding site and used for FRET-based high throughput screening for enzymes or small molecule inhibitors involved in pathways such as SUMOylation. Researchers have demonstrated FRET for peptides encoded with NBD and CUM separated by 4 and 6 amino acids and excited at 340 nm (Figure 1). Figure 1.  Fluorescent intensity of peptide I (6 amino acids between CUM and NBD) and II (4 amino acids between CUM and NBD) excited at 340 nm.  

Very-Small-Nuclear Circulating Tumor Cell (vsnCTC) as a Diagnostic Biomarker of Visceral Metastasis in Advanced Prostate Cancer

UCLA researchers in the Department of Molecular and Medical Pharmacology have identified a novel biomarker that can be used to diagnose prostate cancer patients for the presence of visceral metastasis with 54% sensitivity and 100% specificity.

DNA Methylation: A New Method for the Quantitative Predictor Of Age In Dogs

The ability to properly estimate the age of dogs would be quite useful in a variety of ways. For example, proper age estimation is important because age often plays a significant role when making medical decisions for pets. Currently, the accepted method to estimate age in dogs is based on the quality of teeth as well as ocular features. Estimating age based on tooth-wear (the commonly used metric in shelters) is very inaccurate after the teeth have fully erupted, generally by 6-7 months of age in dogs. Unfortunately, these methods have an accuracy of ~50% at best for domesticated pets and is error-prone for dogs between 2-8 years, encompassing a large portion of a dog’s adult life. Thus, shelters commonly underestimate the ages of these dogs to increase the likelihood of dogs being adopted, as people generally have a preference for younger pets. 

Capture And Stimulated Release Of Circulating Tumor Cells On Polymer Grafted Silicon Nanostructures

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel capture system of circulating tumor cells for the early detection of metastatic cancer.

Single Circulating Tumor Cell Isolation Using Laser Microdissection And A Polymer Enrichment Assay

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel matrix polymer capture system of circulating tumor cells that preserves biomolecular integrity through laser microdissection for the early detection of metastatic cancer.

Method For Indefinite Storage And Preservation Of Membrane Precursors

UCLA researchers in the Department of Bioengineering have developed a novel strategy for the creation of biomimetic lipid bilayer membrane using a high freezing point lipid-containing solvent.  Using this method, the membrane precursor is frozen/immobilized prior to the completion of the spontaneous process of bilayer self-assembly, and the process can be resumed later by simply thawing and allowing membrane formation to resume.

Novel Steroid Hormone Assay

Researchers at the University of California have identified in insects that the membrane transporter, Ecdysone Importer (EcI), is involved in the cellular uptake of the primary steroid hormone ecdysone. Specifically after transport through Ecl, ecdysone’s active form (20-hydroxyecdysone or 20E and related ecdysteroids) enters its target cells and binds to the ecdysone receptor (EcR), which forms a heterodimer with another nuclear receptor and activates transcription of multiple genes involved in molting and metamorphosis. This new discovery of Ecl’s role counters the prevailing consensus that steroid hormones diffuse through cell membranes.  This will enable the screening of new compounds that interact with Ecl.  Such new compounds may be used for insect pest control. Fig. 1 membrane transporters (blue) guide steroid hormones (blue dots) into cells. This new discovery counters the conventionally held scientific consensus that steroid hormones passively diffuse through cell membranes.   Fig. 2 EcI mutants (bottom) were not able to enter into metamorphosis when compared to the control (top).

Mitochondrial Respirometry In Frozen Specimens

UCLA researchers from the Department of Medicine have developed a novel technique for performing mitochondrial respirometry in frozen specimens to accurately assess the cellular energy production capacity.

Phenotypic Profiling Of Hepatocellular Carcinoma Circulating Tumor Cells For Treatment Selection

Researchers in the UCLA Departments of Surgery and Molecular and Medical Pharmacology have developed a novel blood-based assay that can capture and characterize circulating tumor cells indicative of both early- and late-staged hepatocellular carcinoma (HCC).

A High Throughput Biochemical Fluorometric Method For Measuring HDL Redox Activity

UCLA researchers in the Department of Medicine have developed a method of screening for the functional properties of high-density lipoprotein (HDL) in the blood that may serve as a more accurate risk indicator of cardiovascular disease.

Predicting the Placebo Response and Placebo Responders in Medicated and Unmedicated Patients Using Baseline Psychometric and Clinical Assessment Score

UCLA researchers have developed a method and model to predict the placebo effect and placebo responsiveness using the 30-item baseline positive and negative syndrome scales (PANSS) scores, within both the medicated and unmedicated Schizophrenia patients.

Lipid-Modified Oligonucleotides For Sample Barcoding in Droplet Microfluidics-Based Single-Cell RNA Sequencing

A new strategy for barcoding single living cells using lipid-modified oligonucleotides that can vastly enhance sample multiplexing in droplet microfluidics-based RNA sequencing

Optimizing B Cell Epitope-Based Autoantibody Detection In Cancer Patients

UCLA researchers from the Department of Urology have invented a new approach to optimize detection of autoantibody response using Luminex microbead-based multiplex assay. This approach bypasses the difficult process of purifying whole proteins by using select combinations of short B-cell epitopes.

Assay for Oligonucleotides in Serum Without Extraction or RT-PCR

Prof. Ameae Walker’s laboratory at the University of California, Riverside (UCR) has developed an assay to quantify oligos in sub-picomole amounts without the need for sample purification and amplification. This new competitive assay is called an ELOHA (Enzyme-Linked Oligonucleotide Hybridization Assay). The method is illustrated in Fig. 1, below.  Capture Oligos that are to hybridize with an oligo to be measured are covalently linked to a plate (1), a Detection Oligo, with the same sequence as the oligo to be measured, has a conjugated label, such as horseradish peroxidase or biotin.  The Detection Oligo then competes with the oligo of interest for binding to the Capture Oligo (2).  Once the hybridization is complete, the unbound oligos are washed away (3).  A colorimetric readout is produced (4) to inversely quantify the oligo of interest.  Fig. 1 Schematic of the ELOHA assay Fig. 2 shows the use of an ELOHA for amounts of Antimaia in mouse serum. Antimaia is a splice modulating oligomer therapy for breast cancer developed in the UCR lab of Prof. Walker.  

A Micro-Bubble Plate For Patterning Biological and Non-Biological Materials

A method for creating a 3D micro-bubble plate for patterning biological and non-biological materials. Because each sample is at a known location, large numbers of samples may be studied and allow for significant statistical data sets, which will aid in diagnosing unknown agents or diseases inexpensively.

A Micro-Patterned Plate Composed Of An Array Of Releaseable Elements Surrounded With Solid Or Gel Walls

This technology is a micro-patterned plate made of an array of releasable elements surrounded by a gel or solid wall, and a process for manufacturing the micro-patterned plate. This is an efficient way of studying samples for statistically significant data sets of cells or biological materials for important scientific research and medicines.

A Novel Method and Protocol to Induce Pluripotent Stem Cells Toward Astrocyte Differentiation

Rett syndrome (RTT) is a devastating disease that affects 1 in every 10,000 children born in the United States, primarily females. RTT patients undergo apparently normal development until 6-18 months of age, followed by impaired motor function, stagnation and then regression of developmental skills, hypotonia, seizures and a spectrum of autistic behaviors. Rett syndrome is a rare disease that shares certain pathways with major developmental disorders such as autism and schizophrenia, increasing the potential impact. There is no cure for Rett syndrome and the animal model does not entirely recapitulate the human disease. Thus, having the possibility to screen drugs directly in human neurons is a major milestone.

Insect Repellents and Assay

Prof. Anandasankar Ray and his colleagues at the University of California, Riverside (UCR) have developed insect repellants to deter insects from detecting and biting humans. The repellants are comprised of a group of compounds consisting of an aldehyde, mono- or  diketone and an alcohol. Repellants mask the insect’s ability to detect CO2. These repellants can be delivered in a variety of forms and can be used in much smaller concentrations and remain effective for much longer when compared to traditional repellants like DEET. The UCR lab also developed and patented a computational assay to screen and identify mosquito repellents. This assay was used to identify the patented compounds that disrupt CO2 sensing in mosquitos.   Fig. 1 Effect of inhibitory odor, 1-hexanol, on mosquito neuronal CO2 response. The small black bar indicates an 0.5 second exposure to inhibitory odor overlayed with a 3 second response to CO2. The second chart shows how CO2 response is mitigated by the odor   Fig. 2 Effect of pre-exposure to inhibitory odors on long-term reduction to CO2 response. The response to a 0.3% CO2 impulse over 6 minutes was measured every 30 seconds after an initial 3-second exposure to an ‘odor’ mixture (black bars). The odor mixture consisted of 1-hexanolo, pentanal, butanal, and 2,3-butanedione at 10-2 concentration. Paraffin oil (white bars) was used as a control      

  • Go to Page: