Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Research Tools > Other

Categories

[Search within category]

Synthetic Algal Promoters as a Tool for Increasing Nuclear Gene Expression in Green Algae

Algae have enormous potential as bio-factories for the efficient production of a wide array of high-value products, and eventually as a source of renewable biofuels. However, tools for engineering the nuclear genomes of algae remain scarce and limited in functionality, in part due to lack of strong promoters.

Using DNA Methylation Markers To Predict Clinically Important Traits In Mammals

UCLA researchers in the Department of Molecular, Cell, and Developmental Biology have found association of DNA methylation with metabolic syndrome traits in human adipose tissue samples using epigenome-wide association studies (EWAS).

Label-Free Nanoprobes For Long-Term Imaging Of Organelle Movements In Living Cells

To date, the most widely used technique used to monitor organelle movement in living cells is fluorescent imaging, which requires labelling of organelles. Prior organelle labelling causes disturbance in living cells, which may limit understanding of intracellular organelle movement. Furthermore, conventional fluorescence-based single molecule methods are prone to photobleaching, blinking, and low signal-to-noise ratios.

Multi Layered Microfluidic Devices For In Vitro Large Scale Perfused Capillary Networks

"Organ-on-a-chip” technologies allow recapitulation of organ systems in vitro and can be utilized for drug response and toxicity studies, which are required in preclinical studies. However, current recapitulations via “organ-on-a-chip” technologies are limited because the designs do not fully reflect physiological complexity. To address this, UC Irvine inventors have developed a device to better mimic the vascular network of the circulatory system.

A Micro-Bubble Plate For Patterning Biological and Non-Biological Materials

A method for creating a 3D micro-bubble plate for patterning biological and non-biological materials. Because each sample is at a known location, large numbers of samples may be studied and allow for significant statistical data sets, which will aid in diagnosing unknown agents or diseases inexpensively.

A Micro-Patterned Plate Composed Of An Array Of Releaseable Elements Surrounded With Solid Or Gel Walls

This technology is a micro-patterned plate made of an array of releasable elements surrounded by a gel or solid wall, and a process for manufacturing the micro-patterned plate. This is an efficient way of studying samples for statistically significant data sets of cells or biological materials for important scientific research and medicines.

Cyclopentadiene Compounds For Use In Bioorthogonal Coupling Reactions

UCLA researchers in the Department of Chemistry have developed bioorthogonal coupling reactions for labelling biomolecules with molecular probes.

Trainable Filter Emulator For Real-Time Control Systems

Researchers led by Dr. Cong from the Department of Computer Science at UCLA have developed an algorithm that enables real-time control in brain-machine interface applications.

Antisense Oligonucleotide Therapy for B Cell Mediated Cancers

Researchers at the University of California, Davis have developed a targeted therapy using an antisense oligonucleotide (ASO) to treat precursor B cell (pre-B) acute lymphoblastic leukemia (ALL).

Automatic Personal Daily Activity Tracking

Researchers at UCI have developed an entirely unobtrusive method for chronicling and analyzing an individual’s daily activities over time, which relies on tracking user activity via their smartphone. This technology has important applications in health and behavior monitoring, where it can be used to signal the early stages of various diseases and disorders.

Zero-power microfluidic osmotic pumps using ultra-thin PDMS membranes

Researchers at UCI have developed a zero-energy, inexpensive micropump that uses osmotic pressure alone to draw fluid through a microfluidic device.

Hydrostatic pressure-driven passive micropumps

Researchers at UCI have developed an inexpensive and entirely passive pump for microfluidic devices, which yields steady, controllable, and long-lived fluid flow through the device.

Sonification-Facilitated Cognitive Training System to Enhance Visual Learning and Memory

UCLA researchers in the Department of Psychology have developed a new cognitive training tool to enhance visual learning and memory using sound.

Cloud based platform for display and analysis of image time series

Current microscopy systems commonly used in biomedical research labs and companies generate large amounts of large data, known as image stacks. There is currently no easy, streamlined way to store, organize and analyze these datasets on a cloud. Researchers at UCI have developed a software consisting of a cloud-based data management and analysis platform that make visualization and analysis of large image stacks simpler and faster.

Blood Exchange Device

Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The medical costs of managing an aging world poses significant economic and social challenges and will ultimately require a long-term solution. One reason for waning capabilities in people with advancing age is a progressive decline in organ function.  One way to increase healthy longevity would be to rejuvenate the regenerative and repair capacity of aged tissues. Heterochronic parabiosis is an experimental model where the vasculature of two animals of different ages are surgically joined together to create a shared circulatory system and has been used in stem cell and aging research in the last few decades. Heterochronic parabiosis has been shown to rejuvenate the performance of stem cells from old tissues at some expense to the young subject, but whether this occurs as a result of shared circulatory factors or shared organ systems is unclear.   UC Berkeley researchers have discovered, and constructed, a blood exchange system that permits computer controlled isochronic and heterochronic blood exchange transfers for animals. The blood exchange apparatus is an in vivo tool to replace heterochronic parabiosis. Compared to parabiosis, the in vivo animal study apparatus is faster, better controlled and is more flexible in the range of available and potential assays that can be performed.  The Blood exchange system enables less invasive and better-controlled studies with more immediate translation to therapies for humans.

Technique for Respiratory Gated Radiotherapy using Low Frame Rate MRI and a Breathing Motion Model

UCLA researchers in the Department of Radiation Oncology have developed a novel method to gate radiotherapy using low frame rate MRI sequences to reduce damage to adjacent tissues during radiotherapy.

Frequency Doubled Pulsed Swept Laser

UCLA researchers in the Department of Electrical Engineering have invented a swept source laser that operates in the visible light range with a broad sweeping bandwidth.

High-Throughput Intracellular Delivery of Biomolecular Cargos via Vibrational Cell Deformability within Microchannels

UCLA Researchers in the Departments of Chemistry and Materials Science & Engineering have developed a novel means of delivering intracellular cargo.

A Highly Error-Prone Orthogonal Replication System For Targeted Continuous Evolution In Vivo

Inventors at UC Irvine have engineered an orthogonal DNA replication system capable of rapid, accelerated continuous evolution. This system enables the directed evolution of specific biomolecules towards user-defined functions and is applicable to problems of protein, enzyme, and metabolic pathway engineering.

Modular Miniature Microscopy System

UCLA researchers have developed a modular miniature microscopy system for brain imaging in behaving animals.

Simple All-in-One UV Waveguide Microscope with Illumination Sectioning for Surface Morphology and Fluorescence Imaging

Researchers at the University of California, Davis have developed an all-in-one microscope combining ultraviolet excitation light with a waveguide directly integrated onto a light microscope stage, capable of providing surface morphology and fluorescence information with minimal sample preparation.

Single-Pixel Optical Technologies For Instantly Quantifying Multicellular Response Profiles

UCLA researchers in the Department of Mechanical & Aerospace Engineering and the Department of Pathology & Lab Medicine have proposed a new platform technology to actuate and sense force propagation in real-time for large sheets of cells.

An MR-Compatible System for Motion Emulation

Researchers at UCLA from the Departments of Mechanical Engineering and Radiological Sciences have developed a magnetic resonance (MR) compatible device that can emulate respiratory motion.

Mobile Phone Based Fluorescence Multi-Well Plate Reader

UCLA researchers have developed a novel mobile phone-based fluorescence multi-well plate reader.

Bioorthogonally-Engineered Extracellular Vesicles for Applications in Detection and Therapeutic Delivery

Extracellular vesicles (EVs) are promising as drug delivery carriers because they are inherently biocompatible, It would be desirable to efficiently, specifically, and rapidly change the EVs surface presentation to program the interactions with its target cells. Inventors at UC Irvine have developed a strategy for functionalizing the cellular membranes of EVs with precision and ease.

  • Go to Page: