Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Research Tools > Other

Categories

[Search within category]

Carborane-Based Histone Deacetylase (HDAC) Inhibitors

UCLA researchers from the Department of Chemistry & Biochemistry have developed a new class of Histone Deacetylase (HDAC) inhibitors that can be tuned for isoform specificity and other properties.

High Pressure, Laser Floating Zone Crystal Growth Furnace

A furnace that allows for the growth of crystalline material under applied gas pressures of up to 1000atm.

Source Tracking Though Spectral Matching To Mass Spec Databases

Modern metabolomics, proteomics and natural product datasets have now reached into the millions of tandem mass (MS/MS) spectra. The rapidly growing size of these datasets precludes laborious manual data interpretation of all of the data. While MS/MS spectral library search approaches match spectra in an automated fashion, the limited size of available spectral libraries limits identification rates of datasets to single digit percentages. In addition, the sharing of experimental MS/MS data between researchers is not that common. What is needed is a way to organize both identified and unidentified spectra into structurally related molecular families that is searchable.

Methods To Biosynthesize Kainic Acid And Analogues Thereof

Kainic acid is a chemical first derived from seaweed. Neuroscientists routinely use Kainic acid to simulate brain degeneration in lab experiments. Certain inotropic receptors in the brain--known as kainate receptors--are selectively activated only by kainic acid. Research into kainate receptors helps researchers to understand Alzheimer's disease, epilepsy, and other brain disorders. Some scientists use kainic acid to find answers to more fundamental questions such as the function of glutamate receptors. Currently, there are two procedures for generating kainic acid commercially. The first involves the farming and collection of kainic acid-containing seaweed and that method is impacted by seasonal fluctuations of seaweed growth and kainic acid production. The second involves synthetic processes, but the current procedures generally require at least 6 synthetic steps with yields less than 40% and generate environmentally toxic byproducts including heavy metals, cyanides, or halogenated organics.

Flavonol Profile as a Sun Exposure Assessor for Grapes

Researchers at the University of California, Davis have developed a solar radiation assessment method for grapes that uses a flavonol profile. This method can be done using either HPLC or through the computer processing of the absorption spectra of a purified flavonol extract via a purification kit.

Virtual Reality Visualization Of Dynamic Images Using Deformable Image Segmentation

Researchers led by Tzung Hsiai from the David Geffen School of Medicine at UCLA have developed a way to visualize moving objects using virtual reality.

A New Human-Monitor Interface For Interpreting Clinical Images

UCLA researchers in the Department of Radiological Sciences have invented a novel interactive tool that can rapidly focus and zoom on a large number of images using eye tracking technology.

Dicom/Pacs Compression Techniques

Researchers led by Xiao Hu from the Department of Surgery at UCLA have created a novel and convenient way to compress and query medical images from a PACS system.

Method For Indefinite Storage And Preservation Of Membrane Precursors

UCLA researchers in the Department of Bioengineering have developed a novel strategy for the creation of biomimetic lipid bilayer membrane using a high freezing point lipid-containing solvent.  Using this method, the membrane precursor is frozen/immobilized prior to the completion of the spontaneous process of bilayer self-assembly, and the process can be resumed later by simply thawing and allowing membrane formation to resume.

Method to Reuse Multielectrode Arrays in Rodents

Researchers at the University of California have developed a protocol to enable the reuse of MEA probes.  Using this protocol, the MEA probes can be carefully peeled off undamaged from a protective layer, cleaned with ethanol and stored for re-use.  In addition, at each reuse the measured electrode impedances remain within the normal range set by the manufacturer for every channel and the probes may be reused up to six times.  This protocol is an improvement over the existing published protocols in that (1) these particular MEA electrodes are available commercially in a variety of configurations; (2) the MEA can be reused a number of times in order to record EEG in freely moving mice. Fig. 2 Setup of MEA EEG that allowed for enhanced reusability.

Combination Therapy Approach Using Novel Biguanides For Cancer Treatment

Researchers in the UCLA Departments of Molecular and Medical Pharmacology, Chemistry and Biochemistry, Surgery, and Medicine have developed novel metformin analogues which, when combined with immune checkpoint inhibitors, enhance the therapeutic benefit of these inhibitors in treating triple-negative breast cancer and other malignancies.

The Bic Inhibitor Of Cry-Cry And Cry-Cib Oligomerization/ Clustering

UCLA researchers in the Department of Molecular, Cell, and Developmental Biology have discovered two Arabidopsis proteins, BIC1 and BIC2, that are capable of inhibiting light-dependent dimerization of cryptochrome (CRY) molecules. These BICs can be used as an improved drug screening platform through controlled, titratable, label-free and reversible protein – protein interactions.

Thaw Gelation Process for Encapsulating Cell Spheroids

Researchers at the University of California Davis have developed a thaw gelation process for the formation of cell spheroids within a hydrogel shell.

Methods For Modulating And Assaying M6a In Stem Cell Populations

The Xing group at UCLA has discovered a method for modulating and assaying m6A in stem cell populations.

Lipid Bilayer Formation Using Sessile Droplets

UCLA researchers in the Department of Bioengineering have developed a method to form a biologically functional lipid bilayer in a high-throughput and automated fashion.

Predicting the Placebo Response and Placebo Responders in Medicated and Unmedicated Patients Using Baseline Psychometric and Clinical Assessment Score

UCLA researchers have developed a method and model to predict the placebo effect and placebo responsiveness using the 30-item baseline positive and negative syndrome scales (PANSS) scores, within both the medicated and unmedicated Schizophrenia patients.

3D Population Maps for Noninvasively Identifying Phenotypes and Pathologies in Individual Patients

UCLA researchers in the Department of Radiological Sciences have developed a novel computation system that uses large imaging datasets to aid in clinical diagnosis and prognosis.

Method to Direct the Reciprocal Interactions Between the Ureteric Bud and the Metanephric Mesenchyme

Researchers at UCLA have developed an approach to construct an embryonic kidney in vitro for the treatment of end stage renal disease.

Deep Learning Enhanced Mobile-Phone Microscopy

UCLA researchers in the Department of Electrical Engineering have developed an enhancement method via deep learning that improves the quality of images from mobile-phone microscopes.

A Novel Renilla-Derived Luciferase with Enhanced Activity and Stability

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a novel luciferase variant with enhanced stability and activity.

High Throughput Digital Cell Quantification Of Immune Cell Subsets Via Epigenetic Markers

UCLA researchers in the Department of Molecular, Cell, and Developmental Biology have developed a novel high-throughput method for the quantification of immune cell subtype.

Precise tracking of subsurface tissue probes and objects

The invention is a novel method that tracks the position of probes and objects deep inside tissues, with unprecedented 3D precision. Data obtained from optical techniques are combined with that provided through ultrasound methods, providing accurate localization in the 3D space, along with precise anatomical structure. Such a combined method is crucial for precision-sensitive applications as anesthetic drug delivery.

A Device For Continuous Focusing And Rotation Of Biological Cells And Its Application For High Throughput Electrorotation Flow Cytometer

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel device for high-throughput label-free analysis of cells.

Reagent to Label Proteins via Lysine Isopeptide Bonds

Researchers in the UCLA Department of Chemistry and Biochemistry and the University of Texas-Medical Center, Houston Department of Microbiology and Molecular Genetics have modified the Corynebacterium diphtheriae (C. diphtheriae) sortase enzyme so that it can be used as a bioconjugation reagent in vitro.

  • Go to Page: