Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Research Tools > Animal Models


[Search within category]

Development of Human-Derived Cerebral Organoids with Network Oscillations

Historically, the understanding of the development and pathophysiology of the human brain has been studied by examination of post-mortem and diseased specimens in conjunction with non-human primates and mouse models. The understanding of complex biological mechanisms is driven by advancement of techniques and new model systems and recent advances in stem technologies have contributed to the advancement of our knowledge of human neural development. Moreover, the reprograming of human somatic cells into induced pluripotent stem cells (iPSCs) which can be redirected to a specific cell fate has led to a breakthrough in neurobiology research. These findings have led to the generation of human brain organoids from IPSCs.

A Method for Making a Human Alzheimer’s Disease Neuronal Model Using Purified ApoE-HDL

Alzheimer's disease (AD) is a common neurodegenerative disease and the most common cause of dementia. Alzheimer’s disease is defined post-mortem by the increased presence of amyloid plaques and neurofibrillary tangles (NFTs) in the brain. Amyloid plaques are extracellular deposits consisting primarily of amyloid-ß (Aß) peptides, and NFTs are intraneuronal aggregations of hyperphosphorylated tau, a microtubule-associated protein involved in microtubule stabilization. The discovery of new drugs for treating Alzheimer’s disease is currently limited by difficulties in obtaining live neurons from patients and the inability to accurately model Alzheimer’s disease. Animal models of Alzheimer’s disease have been developed, however, these animal models do not completely mimic true human disease, and none of these animal models are neuronal models of the disease. There is a need to develop a human neuronal model that more accurately mimics true human Alzheimer’s disease, and then use such a model for Alzheimer’s disease drug discovery and research.

Method for creating a macular/retinal degeneration animal model

Researchers at UCI have developed an animal model that mimics the onset and progression of age-related macular degeneration, an incurable disease that is the fourth-leading cause of blindness globally. The model serves as a means for testing the efficacy of possible treatments and cures.

Generation of a New Animal Model for Studying Multiple Sclerosis

Human multiple sclerosis affects millions of people and is predominately a chronic immune-mediated disease of the central nervous system (CNS). The disease is estimated to affect 2-3 million in 2013 on a global basis. The value of the multiple sclerosis therapeutics market will rise from $17.2 billion in 2014 to approximately $20 billion by 2024. However, the pathogenic mechanisms underlying disease progression are not understood and currently there is no cure for the disease. Therapeutic drugs are developed using two classical experimental autoimmune/allergic encephalomyelitis (EAE) models. Experimental autoimmune/allergic encephalomyelitis (EAE) is the most extensively studied animal model for human MS. However, EAE mainly affects spinal cord white matter, whereas human MS displays demyelination and axonal injuries in the cerebral and cerebellar cortex. In addition, human MS progression cannot be studied in EAE.The second major animal model is RNA virus (TMEV, Theiler’s murine encephalomyelitis virus) induced demyelination, which is considered as a more relevant model to human MS. However, demyelination is caused by persistent TMEV virus infection that is not observed in human MS. Additionally, the TMEV virus can only infect mouse, but not other rodents or primates, limiting its utilization in establishing MS models in other species. Because the TMEV virus is a mouse pathogen, animal facilities often refuse such studies. A new animal model that more closely resembles the pathology of human multiple sclerosis is urgently needed.

A Way to Genetically Silence Calcium Signaling in Cells and Organisms and Derivates Thereof

UCLA researchers in the Department of Physiology have developed a method of genetically silencing calcium signaling in cells and organisms for use in studying aberrant calcium signaling in disease.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Use of mutant Kv7.2 channels for anti-epileptic and pain therapies

During seizures or pain-induced inflammation, excess chemical mediators suppress potassium channels mediating neuronal activity and thereby inactivate new generation anti-epileptic drugs and painkillers acting on those channels. The invention describes a gene therapy using a genetically-engineered potassium channel that reduces adverse effects by silencing neuronal hyperactivity while maintaining normal neuronal activity in the presence of chemical mediators to treat epilepsy and pain.

An Antibody to Phospho T3 of Human Huntingtin

Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by abnormal function of mutated Huntingtin protein. The invention uncovers an antibody to a new post-translational modification site that affects human Huntingtin aggregation and pathogenesis of HD.

Therapeutic strategies for Huntington’s Disease using stop codon suppression

In Huntington’s Disease (HD), aberrant splicing of the huntingtin protein can produce a highly toxic peptide that accumulates in the brain. The invention describes methods to minimize the toxicity of spliced proteins.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature. The feature vibrates in order to counteract particle-trapping micro-vortices formed in the device. Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

A Mouse Model of Human Papillomavirus (HPV) infection for Drug Discovery

UCSF researchers have generated and validated a K14-HPV16 transgenic mouse model, in which transgene expression produces neoplastic progression that fully resembles the gynecological and other epithelial dysplastic lesions induced by high risk HPVs. This model offers an invaluable tool for studying HPV infection and developing new drugs for HPV treatment.

Heterochronic Blood Exchange As A Modality To Influence Myogenesis, Neurogenesis, And Liver Regeneration

One reason for waning capabilities with advancing age is a progressive decline in organ function. Heterochronic parabiosis rejuvenates the performance of old tissues' stem cells at some expense to the young, but whether this is through shared circulatory factors or shared organ systems is unclear; and parabiosis is not a clinically adaptable approach. The old heterochronic partners have access to young organs, environmental enrichment and youthful hormones/pheromones, while the young parabiont maintains an additional aged body with deteriorating organs. In contrast to the permanent anastomosis of parabiosis, UC Berkeley researchers have used a small animal blood exchange where animals are connected and disconnected at will, removing the influence of shared organs, adaptation to being joined, etc. The effects of heterochronic blood exchange were examined with respect to all three germ layer derivatives: injured-regenerating muscle, ongoing liver cell proliferation and brain - hippocampal neurogenesis, and in the presence and absence of muscle injury.  The influence of heterochronic blood exchange on myogenesis, neurogenesis and hepatogenesis was fast, within a few days.  These findngs suggest a rapid translation of blood apheresis (FDA approved for other diseases, but not for the degenerative pathologies) for therapy to attenuate and reverse liver fibrosis and adiposity, muscle wasting and neuro-degeneration.  

Microfluidic Pressure Regulator For Robust Hydrogel Loading Without Bursting

This invention is aimed at controlling the pressure in 3D cell cultures. It consists of a combination of microfluidic channels, which surround the extracellular matrix (ECM), tunable pressure-regulated valves, which activate when a threshold pressure is reached in the ECM, and a repository, to direct excess gel away from the cell culture if the threshold pressure is exceeded. It can prevent leakage of gel between adjacent cell cultures in high-throughput arrays and is compatible with various cell culture materials and injection equipment.

Brazilian Zika Virus Cellular Models

Zika Virus (ZIKV) is an arbovirus of the genus Flavivirus Flaviviridae linked to microencephaly, as one form of congenital malformation, and also Guillain–Barré syndrome, and other severe neurological diseases. Dr Alysson Muotri and coworkers recently published in the journal Nature results of research using cellular models of the Brazilian Zika virus strain causing birth defects.This drug screening platform represents a useful human model of microcephaly due to Zika virus in a mouse model.  

Transposon Vector for Vertebrate & Invertebrate Genetic Manipulation

Background: Therapeutic delivery of genes is a rapidly evolving technique used to treat or prevent a disease at the root of the problem. The global transgenic market is currently $24B, growing at an annual projected rate of 10%. Currently, a variation of this technique is widely used on animals and crops for production of desirable proteins, but this is a heavily infiltrated market. Thus, entering the gene therapy segment is more promising and would enhance the growth of this industry.  Brief Description: UCR Researchers have identified a novel transposon from Aedes aegypti mosquitoes. This mobile DNA sequence can insert itself into various functional genes to either cause or reverse mutations. They have successfully developed a transposon vector system that can be used in both unicellular & multicellular organisms, which can offer notable insight to improve current transgenic technologies as well as methods of gene therapy.

Potential Driven Electrochemical Modification of Tissue

Researchers at UC Irvine have developed a minimally invasive technology that uses electrical potentials to perform a variety of to modify and reshape soft tissues such as cartilage

Integrative Approach for the Analysis and Visualization of Static or Dynamic Omic Data, Including Genomic, Proteomic, Gene Expression, and Metabolic Data

The technology is a method for analysis and mapping of a broad range of omic data.It features maps and visualizes interactions between omic data, such as how the circadian metabolome, transcriptome, and proteome operate in concert.With this technology, users can use non-public and public data, per tissue/organ data and data across multiple conditions.


Novel Zebrafish epilepsy models carrying the same genetic mutations found in the human population make excellent tools for high-throughput drug screening, in vivo toxicology studies and basic research purposes. 

Ferrofluid Droplets to Locally Measure the Mechanics of Soft Materials

A technique and apparatus that can measure the mechanical properties of any kind of soft material, including complex fluids, living embryonic and adult tissues (such as skin), as well as tumors. 

Suppression of sPLA2-Integrin Binding for Treating an Inflammatory Condition or Suppressing Cell Proliferation

Researchers at the University of California, Davis have found a number of peptides that bind to human secreted phospholipase A2 type IIA (sPLA2-IIA) and inhibit integrin signaling. These compounds show promise as therapies to decrease inflammation and cell proliferation, and may be developed for the treatment of conditions such as rheumatoid arthritis, asthma, Alzheimer’s disease, and cancer. These compounds may also function in screening assays for new compounds that inhibit integrin signaling.

A Novel Mouse Model for Friedreich's Ataxia

Friedreich’s Ataxia (FRDA) is a debilitating, life‐shortening, degenerative neuromuscular disorder that is caused by severely reduced levels of frataxin. It affects about one in 50,000 people in the United States, but currently there are no treatments. Therefore the generation of corresponding mouse models is vital for understanding and designing better therapeutic strategies. However, because the organismwide frataxin knockdown is embryonically lethal, existing FRDA animal models either exhibit mild symptoms, or only have reduced frataxin in selected tissues.

CD33 Null Mice: Murine Model for Alzheimer's Disease

Although the CD33 null mouse was originally developed as a means of understanding the basic biology of human CD33 (hCD33 or Siglec-3), recent studies have identified the CD33 gene is a primary risk factor for Alzheimer’s disease and allelic variants of CD33 may play a primary role in the clearance of amyloid beta by microglial cell in the brain.

  • Go to Page:

These technologies are available for licensing online