Browse Category:


[Search within category]

High-throughput planarian in vivo screening platform

UC San Diego investigators have developed a method of high-throughput screening (HTS) using freshwater planarians as a model. One use of this model is to screen chemical compounds. Conventional developmental toxicology testing is usually performed on mammals which is both expensive and low-throughput. A high-throughput inexpensive method capable of in vivo testing is highly desired whereby freshwater planarians could be used as an in vivo animal model.  Planarians are well suited to HTS, with their small size, sensitivity to chemicals, fast development and amenability to automated assays. These worms allow simultaneous assaying of adult and developing worms with the same assays, allowing direct comparison of the effects of chemicals on both populations. Furthermore, planarian brains are structurally similar to the mammalian brain, so that one can ascertain neurodevelopmental toxicity that is applicable to humans.

Brazilian Zika Virus Cellular Models

Zika Virus (ZIKV) is an arbovirus of the genus Flavivirus Flaviviridae linked to microencephaly, as one form of congenital malformation, and also Guillain–Barré syndrome, and other severe neurological diseases. Dr Alysson Muotri and coworkers recently published in the journal Nature results of research using cellular models of the Brazilian Zika virus strain causing birth defects.This drug screening platform represents a useful human model of microcephaly due to Zika virus in a mouse model.  

CRISPR/Cas9 Ribonucleoprotein Delivery In Vivo Using Gold Nanoparticles

The Cas9/Crispr gene editing technology has the potential to revolutionize biology and medicine, due to its unique ability to generate site-specific DNA recombination and gene correction. However, the delivery of Cas9 still remains a problem, and this limits the scientific and medical applications of Cas9. Current methods for delivering Cas9 are primarily based on viral gene therapy, which is problematic due to toxicity from sustained expression and random genomic integration. Non-viral gene therapy has also been investigated for delivering Cas9, guide RNA and donor DNA into cells, however this is ineffective in numerous cell types, such as ES stem cells and primary cell lines, which represent the major applications for Cas9 gene editing.   Researchers at UC Berkeley have developed a novel delivery vehicle, based on gold nanoparticles, termed CRISPR-Gold, which can be used to simultaneously deliver Cas9 protein, guide RNA and donor oligonucleotides into target cells and efficiently induce site directed DNA recombination. CRISPR-Gold is composed of nanometer sized gold nanoparticles conjugated with DNA, which have Cas9 protein, guide RNA, donor oligonucleotides and endosomal disruptive polymers complexed to them. Researchers have shown that CRISPR-Gold can deliver Cas9 protein, guide RNA and donor oligonucleotides into numerous cell types, including, stem cells, iPS cells and muscle progenitor cells, and induce gene editing and gene corrections with an efficiency that is significantly better than existing delivery vehicles. Additionally researchers have shown that CRISPR-Gold can perform gene editing in vivo and correct DNA  mutations in mice via homologous recombination.  

Transposon Vector for Vertebrate & Invertebrate Genetic Manipulation

Background: Therapeutic delivery of genes is a rapidly evolving technique used to treat or prevent a disease at the root of the problem. The global transgenic market is currently $24B, growing at an annual projected rate of 10%. Currently, a variation of this technique is widely used on animals and crops for production of desirable proteins, but this is a heavily infiltrated market. Thus, entering the gene therapy segment is more promising and would enhance the growth of this industry.  Brief Description: UCR Researchers have identified a novel transposon from Aedes aegypti mosquitoes. This mobile DNA sequence can insert itself into various functional genes to either cause or reverse mutations. They have successfully developed a transposon vector system that can be used in both unicellular & multicellular organisms, which can offer notable insight to improve current transgenic technologies as well as methods of gene therapy.

Potential Driven Electrochemical Modification of Tissue

Researchers at UC Irvine have developed a minimally invasive technology that uses electrical potentials to perform a variety of to modify and reshape soft tissues such as cartilage

Integrative Approach for the Analysis and Visualization of Static or Dynamic Omic Data, Including Genomic, Proteomic, Gene Expression, and Metabolic Data

The technology is a method for analysis and mapping of a broad range of omic data.It features maps and visualizes interactions between omic data, such as how the circadian metabolome, transcriptome, and proteome operate in concert.With this technology, users can use non-public and public data, per tissue/organ data and data across multiple conditions.


Novel Zebrafish epilepsy models carrying the same genetic mutations found in the human population make excellent tools for high-throughput drug screening, in vivo toxicology studies and basic research purposes. 

Zebrafish-based Analysis Platform (iZAP)

Animal testing is a vital part of neurological disorder research and drug discovery. One problem is tied to low throughput associated with common single-subject tracking and analysis. Another set of problems are related to the manual and invasive nature of animal-based test operations. To overcome these problems, researchers at the University of California, Berkeley have developed and demonstrated a zebrafish-based analysis platform (iZAP) for high-throughput, multichannel laboratory testing and research. The multi-fluidic platform system allows for simultaneous measurements of activity in many organisms at one time, including enhanced electroencephalography and electrocardiography. Berkeley’s iZAP holds promise in terms of faster and broader measurements, improved accuracy, and significantly lower cost per test than current market approaches.

Ferrofluid Droplets to Locally Measure the Mechanics of Soft Materials

A technique and apparatus that can measure the mechanical properties of any kind of soft material, including complex fluids, living embryonic and adult tissues (such as skin), as well as tumors. 

Suppression of sPLA2-Integrin Binding for Treating an Inflammatory Condition or Suppressing Cell Proliferation

Researchers at the University of California, Davis have found a number of peptides that bind to human secreted phospholipase A2 type IIA (sPLA2-IIA) and inhibit integrin signaling. These compounds show promise as therapies to decrease inflammation and cell proliferation, and may be developed for the treatment of conditions such as rheumatoid arthritis, asthma, Alzheimer’s disease, and cancer. These compounds may also function in screening assays for new compounds that inhibit integrin signaling.

Novel Therapeutic Targets in Liver Fibrosis

Liver fibrosis often results from chronic liver pathologies, increasing the risk of cancer and even death by liver failure. Except for transplantation of the liver in advanced cases, current treatment for liver fibrosis is very limited although studies are underway to determine the mechanisms of fibrogenesis. New therapies will depend on learning the cellular events of fibrosis and finding druggable targets in those signaling pathways.

CD33 Null Mice: Murine Model for Alzheimer's Disease

Although the CD33 null mouse was originally developed as a means of understanding the basic biology of human CD33 (hCD33 or Siglec-3), recent studies have identified the CD33 gene is a primary risk factor for Alzheimer’s disease and allelic variants of CD33 may play a primary role in the clearance of amyloid beta by microglial cell in the brain.

Sampling Cartridge for Gas-Phase Ammonia and Amines

The purpose of the technology is the efficient measurement of gas-phase ammonia and amines that minimizes exposure of sample to instrument surfaces prior to measurement. Measuring ammonia and/or amines at atmospherically relevant concentrations for use in industrial and/or pharmaceutical processes. The technology is a sampling cartridge for measurement of gas-phase ammonia and amines. Properties include: a detection limit in low ppt, short sampling times (<60 min), ability to operate at atmospherically relevant conditions. The cartridges are long lasting and easily regenerated and have higher quality detection limits for evaluation of gases.

Construction Of A New Murine Model To Study The Contribution Of Complement And Complement-Mediated Inflammation In Human Diseases

The complement system plays an important role in innate and adaptive immune responses, and it has been associated with many CNS disorders and autoimmune diseases as a histological marker of inflammation and tissue destruction. Researchers have found that inhibition of complement activation has beneficial effects, including reducing leukocyte infiltration in experimental stroke models and improving neurological outcomes for patients with traumatic head injury. Due to the importance of using animal models in the research and investigation of human disease, newer mouse models will be essential in further understanding the role of complement in inflammatory diseases. Researchers at the University of California, Irvine have developed an improved murine model of human inflammatory disease. This new mouse model may be used to study disease mechanisms, identify drug targets, and test drugs prior to clinical trials in humans.

Lhx2 Conditional Knockout Mouse ("Lhx2 Cko")

The LIM homeobox gene Lhx2 has been studied and found to be necessary for the normal development of the eye, cerebral cortex, and pituitary glands. In addition, it has been investigated for its role in diseases of the cerebral cortex, including schizencephaly, septo-optic dysplasia, and Joubert syndrome. Due to the importance of the Lhx2 gene, researchers have developed knockout mice without the Lhx2 gene. However, drawbacks to conventional “fixed” knockout mice of the Lhx2 gene include embryonic lethality and the inability to perform mosaic analysis of Lhx2 activation. Newer knockout models that address these drawbacks will allow researchers to enhance their studies of the Lhx2 gene. Researchers at the University of California, Irvine have developed a new Lhx2 conditional knockout mouse. This mouse line is unique in that the place and time of the inactivation of the Lhx2 gene can controlled. Also, this mouse line allows researchers to perform mosaic analyses and does not result in embryonic lethality.

Automated Scratch Detection System (Pruritis in Rodents)

Chronic pruritus is estimated to occur in about 8% of the adult population. However, there are few drugs specifically targeting this problem. With a growing interest in this area, new drugs may be developed to address this problem. Screening active compounds using current methods, such as manual counting in real time or recorded videos, can be time consuming. Accordingly, there is a need to automate detection of scratching in test animals.

Dual Transgenic Mice for Endothelial Cell Research (Ve-Cadherin Cre-Recombinase - Rosa26r-YFP)

UCLA researchers have developed a dual transgenic animal that enables genetic tracing of endothelial cells and their derivatives.

Ras-Driven Conditional Model Of Liver Cancer

Liver cancer is among the most lethal cancers, the third and sixth most frequent cause of cancer death in men and women, respectively.  Amongst the several histologically different primary hepatic malignancies, hepatocellular carinoma (HCC) accounts for 70 to 85% of the cases.  Animal models that mimic features of liver tumor development in human are invaluable research tools for understanding the mechanism of liver carcinogenesis and developing new drugs for treatment of patients with HCC.

Collaboration Opportunity: Novel Mouse Models of Human Hepatitis B Virus Infection for Drug Discovery and Vaccine Research

HBV infection can lead to chronic infections that result in 0.6 million deaths per year worldwide by causing liver failure and cancer. Clearance of HBV infection is age dependent, with the majority of adult-acquired infections leading to spontaneous clearance, whereas infection in young children often leads to chronic infections. To study these early events of infection and immune activation that lead to HBV clearance or persistence, in vivo models are needed to screen and validate lead drug candidates. HBV cannot infect mice, however, researchers at UCSF have generated transgenic mouse models that mimic critical features of primary HBV infection observed in humans.

Novel Imaging Technique Combines Optical and MR Imaging Systems To Obtain High Resolution Optical Images

Researchers at the University of California, Irvine have developed a novel high resolution imaging technique, referred to as Photo-Magnetic Imaging (PMI), that combines the abilities of optical and magnetic resonance (MR) imaging systems. Images are created with PMI by heating tissue with a light (e.g. laser) and measuring the resulting temperature change with MR Thermometry. This change in temperature can then be related to a tissue’s absorption, scattering, and metabolic properties. PMI addresses the limitations of current optical imaging techniques by providing a repeatable, non-contact, high resolution optical image with increased quantitative accuracy. This technique can be used for a wide-range of applications including but not limited to imaging of small animals for research purposes. This technique may also be used in imaging the tissue and organs of a patient.

Cloned Zebrafish from Long-Term Cultured Cells

UCLA investigators have successfully demonstrated the cloning of transgenic zebrafish from long-term-cultured cells to provide adequate time for use in targeted genetic manipulation. Zebrafish also exhibit characteristics of embryonic stem cells.

mGFAP-Cre-Recombinase Transgenic Mouse Strains

Brief description not available

  • Go to Page:

These technologies are available for licensing online

University of California
Innovation Alliances and Services

1111 Franklin Street, 5th Floor,Oakland,CA 94607-5200 |
Tel: 510.587.6000 | Fax: 510.587.6090 |