Browse Category: Medical > Imaging

Categories

[Search within category]

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

Near Infrared Fluorescent Imaging Used to Assess Tissue Perfusion in Surgery

Near infrared (NIR) fluorescence imaging (FI) utilizing the fluorophore indocyanine green (ICG) has become more popular for use in medical diagnostics. It is useful for assessing tissue perfusion in a number of surgeries, particularly abdominal, heart, plastic, hepatic as well as other areas of medicine. The light needed for the excitation of the fluorescence is generated by a near infrared light source which is attached directly to a camera. A digital video camera allows the absorption of the ICG fluorescence to be recorded in real time, which means that perfusion can be assessed and documented. Currently, ICG provides a visual representation of tissue perfusion as a global view. Although some efforts have been put into density analysis, no device or software currently performs dynamic evaluation of blood flow for a surgeon. Without objective dynamic measurements, practitioners are only limited to snap shot view of the static environment. This is a problem because it is the dynamics of blood flow that determines tissue perfusion, not how much blood present at a stationary point in time. Furthermore, because there are no numerical evaluations out on the market that can capture this dynamic aspect of blood flow, practitioners are forced to use the naked eye to make a clinical decision that is not only subjective, but is difficult to assess between cases.

Developing Physics-Based High-Resolution Head And Neck Biomechanical Models

UCLA researchers in the Department of Radiation Oncology at the David Geffen School of Medicine have developed a new computational method to model head and neck movements during medical imaging/treatment procedures.

Biologically Applicable Water-Soluble Heterogeneous Catalysts For Parahydrogen-Induced Polarization

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of parahydrogen-induced polarization in water using heterogeneous catalysts.

Fully Automated Synthesis Of 16B-[18F] Fluorodihydrotestosterone ([18F]-FDHT)

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a method for the fully automated synthesis of 16β- 18F-fluorodihydrotestosterone (18F-FDHT), a probe to monitor prostate cancer.

Breast Lesion Characterization Using Contrast Mammography

Breast cancer is the most common cancer in women in the U.S. As with any cancer, early detection and treatment is critical in minimizing the severity of the tumor and risk of death. Researchers at UCI School of Medicine have developed a novel contrast-enhanced mammography technique capable of distinguishing between benign and malignant lesions in breast tissue.

Scanning Method For Uniform, Normal-Incidence Imaging Of Spherical Surface With A Single Beam

UCLA researchers have created a method that achieves uniform normal-incident illumination of a spherical surface by first projecting the sphere onto a Cartesian plane and then raster scanning it using an illuminating beam. This allows the scanned object, the illumination source, and the detector to remain stationary.

Assessment Of Wound Status And Tissue Viability Via Analysis Of Spatially Resolved Thz Reflectometry Maps

UCLA researchers in the Department of Bioengineering have developed an algorithm to assess the burn wound severity and predict its future outcomes using Terahertz imaging.

Time-Resolved Fluorescence Imaging Without Lifetime Fitting

UCLA investigators have developed a novel method to obtain time-resolved fluorescence imaging (TRFI) without the need to extract a fluorescence lifetime. Compared to conventional TRFI, this novel method is reliable, simple, time-saving and can dramatically improve biomedical applications of TRFI.

A Method For In Magnetic Resonance Perfusion Weighted Images

UCLA researchers in the Departments of Radiological Sciences and Neurology have developed a novel algorithm for processing perfusion weighted magnetic resonance images.

Estimation Of Contrast Concentration From Angiograms In Presence Of Vessel Overlap

UCLA researchers have developed an image processing technique for quantitative measurement of brain hemodynamics using x-ray digital subtraction angiography (DSA) images. 

Non-Invasive Method For Determination Of Tissue Electrical Conductivity

UCLA researchers in the UCLA Semel Institutes of Neuroscience and Behavior have developed a non-invasive method to locate and estimate electrical currents in organs such as the brain and heart.

Revolutionizing Micro-Array Technologies: A Microscopy Method and System Incorporating Nanofeatures

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree incoherent holographic microscope using a plasmonic aperture.

Lensfree Wide-Field Fluorescent Imaging On A Chip Using Compressive Decoding

UCLA researchers have developed a compressive sampling algorithm for on-chip fluorescent imaging over an ultra-large field-of-view without the need for any lenses or mechanical scanning.

Holographic Opto-Fluidic Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a system for holographic opto-fluidic microscopy.

Lensfree Super-Resolution Holographic Microscopy Using Wetting Films On A Chip

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree super-resolution holographic microscope using wetting films on a chip.

Fluorescent Imaging Of Single Nano-Particles And Viruses On A Smart-Phone

UCLA researchers in the Department of Electrical Engineering have developed a novel field portable fluorescence microscope that can be used as a smart phone accessory.

High-Throughput And Label-Free Single Nanoparticle Sizing Based On Time-Resolved On-Chip Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a rapid, low-cost, and label-free methodology for nanoparticle sizing.

Pixel Super-Resolution Using Wavelength Scanning

UCLA researchers have developed a novel way to significantly improve the resolution of an undersampled or pixelated image.

Microscopic Color Imaging And Calibration

UCLA researchers in the Department of Electrical Engineering have developed a color calibration method for lens-free and mobile-phone microscopy images allowing for high resolution and accurate color reproduction.

Demosaiced Pixel Super-Resolution For Multiplexed Holographic Color Imaging

UCLA researchers have developed a new high-resolution color microscopy technique termed Demosaiced Pixel Super-Resolution (D-PSR), which significantly improves the performance of holographic high-resolution color imaging.

Wide-Field Imaging Of Birefringent Crystals In Synovial Fluid Using Lens-Free Polarized Microscopy For Crystal Arthropathy Diagnosis

UCLA researchers in the Department of Electrical Engineering have developed a new diagnostic tool for arthropathic diseases, such as gout.

A Method For Measuring Cardiac Timing From A Ballistocardiogram

UCLA researchers have developed an algorithm to directly measure the cardiac timing from Ballistocardiogram (BCG) to help cleaning the BCG from the Electroencephalogram (EEG) recording.

Fully Automated Localization Of EEG Electrodes

UCLA researchers have developed an algorithm for precisely locating EEG electrodes with respect to the patient’s brain.

Live Cell Detection by Near-Infrared Fluorogenic Tetrazine Uncaging Oligo Probes

There is significant interest in developing methods that visualize and detect RNA in live cells. Bioorthogonal template driven tetrazine ligations are quickly becoming a powerful route to visualizing nucleic acids in native cells, yet past work has been limited with respect to the diversity of fluorogens and existing tetrazine-reactive fluorogenic probes are quenched by through‐bond energy transfer (TBET) or Fӧrster resonance energy transfer (FRET) between the donor fluorophore and acceptor tetrazine.

  • Go to Page: