Browse Category: Medical > Therapeutics

[Search within category]

Programmable Peptide Nucleic Acid-Based Nanoplatform for Customizable Drug Delivery

Researchers at the University of California, Davis have developed a peptide nucleic acid-based system enabling precise and customizable delivery of antigens, adjuvants, and targeting molecules for improved cancer immunotherapy.

1-(Benzo[1,2-b:4,5-b']Difuran-4-yl)alkyl-2-amines and 1-(2,3,6,7-Tetrahydrobenzo[1,2-b:4,5-b']Difuran-4-yl)butan-2-amines as Serotonin Receptor Modulators for Neurodegenerative Disorders

Researchers at the University of California, Davis have developed novel serotonin receptor modulators designed as mixed 5-HT2A/2C partial agonists that demonstrate promising disease-modifying potential for Parkinson’s Disease with improved safety and efficacy.

Genomic Destructive CRISPR Guide RNAs

Brief description not available

Reusable, Sterilizable Surgical Instruments for Deployment of Neuropixels Probes in the Operating Room

Researchers at the University of California, Davis have developed a system of reusable, sterilizable 3D-printed surgical tools that enables safe, precise intraoperative deployment of Neuropixels probes within standard neurosurgical workflows.

Using Class I Lasso Peptides to Inhibit the Bacterial Type III Secretion System

Antibiotic resistance is a major issue in infectious disease treatment and prevention. In bacteria, the type III secretion system (T3SS) secretes effector proteins in the host cell, allowing the pathogen to infect. The T3SS is largely found on pathogens and not beneficial bacteria, so targeting the T3SS might have an advantage over using classic antibiotics, which disturb the beneficial human microbiome.

Vaccines Using Macrophage Suppression

Researchers at the University of California, Davis have developed a technology that introduces vaccines that express macrophage-suppressing molecules to significantly enhance inflammatory T-cell functions for improved immune responses.

Macrophage Targeting Peptides - Peptide Sequences that are Specific to M1 And M2 Macrophages for Application in Molecular Imaging and Therapy

Researchers at the University of California, Davis have developed isolated peptides that selectively bind M1 and M2 macrophages to enable precise diagnosis and targeted treatment of macrophage-associated diseases, including cancer.

Cationic Silyl-Lipids for Enhanced Delivery of Anti-viral Therapeutics

Researchers at the University of California, Davis have developed an advancement in the field of healthcare technology, specifically in the development and application of silyl lipids for RNA vaccines.

Silyl-lipid N-acyl L-homoserine Lactones (AHLs) as Quorum Sensing Molecules (for Biofilms)

Researchers at the University of California, Davis have developed a potential therapeutic strategy aiming at disrupting intercellular communication of pathogens using quorum sensing molecules and silicon-based pharmacophores.

Silyl-lipid Cannabinoids with Enhanced Biological Activity

Researchers at the University of California, Davis have developed a therapeutic use of cannabinoids for the treatment of Neurodegenerative Disorders (NDDs).

Nanoplatform for Cancer Therapy

Researchers at the University of California, Davis have developed a nanoparticle system combining photothermal therapy and chemotherapy for enhanced cancer treatment.

Intranasal Delivery of Allopregnanolone

Researchers at the University of California, Davis have developed non-invasive methods for intranasally delivering the drug allopregnanolone.

  • Go to Page: