Browse Category:

Categories

[Search within category]

Pyrite Shrink-Wrap Laminate As A Hydroxyl Radical Generator

The invention is a diagnostic technology, as well as a research and development tool. It is a simple, easy to operate, and effective platform for the analysis of pharmaceuticals and biological species. Specifically, this platform generates hydroxyl radicals for oxidative footprinting – a technique commonly employed in protein mapping and analysis. The platform itself is inexpenisve to fabricate, scalable, and requires nothing more than an ordinary pipet to use. In addition, it is highly amenable to scale-up, multiplexing, and automation, and so it holds promise as a high-throughput method for mapping protein structure in support of product development, validation, and regulatory approval in the protein-based therapeutics industry.

Radioactive Soft Tissue Filler For Brachytherapy

The invention is a radioactive gel for treatment of soft tissue cancers. This compliant, biocompatible gel infused with radioactive elements is meant to provide cosmetic tissue restoration as it fills out cavities resulting from tumor removal (e.g. lumpectomies). Once in the cavity, the material delivers precisely dosaged and localized radiation therapy (also known as brachytherapy) to the affected tissues around it.

Hemostatic Compositions And Methods Of Use

Wet layered clays used as hemostatic agent to promote blood clotting.

Mesocellular Oxide Foams as Hemostatic Compositions and Methods of Use

Mesocellular foams used as hemostatic agents to facilitate clotting, wound healing, and reduce the risk of infection. It can be provided in combination with antibiotics, ions, or anti-inflammatory agents.

NOVEL OPIOID RECEPTOR AGONIST FOR ANALGESIA WITH REDUCED SIDE EFFECTS

This invention identifies a novel molecule that allows for more effective pain management through selective activation of the µ opioid receptor (MOR) with reduced detrimental side effects. 

Treatment of Epilepsy with Clemizole

This technology is a novel method of treating epilepsy disorders with the small molecule clemizole.

Development of a novel class of small molecules for the treatment of cognitive disorders

Neuronal dendritic spines act as sites of learning and memory in the brain. Dysregulation of dendritic spines is a central problem in a wide range of neurodegenerative and developmental cognitive diseases such as Autism spectrum disorder, Schizophrenia, Stroke, ADHD, and PTSD. There are very few examples of molecules that promote the formation of new dendritic spines.

Salmonella-Based Gene Delivery Vectors and their Preparation

Nucleic acid-based gene interference technologies, including ribozymes and small interfering RNAs (siRNAs), represent promising gene-targeting strategies for specific inhibition of mRNA sequences of choice. A fundamental challenge to use nucleic acid-based gene interfering approaches for gene therapy is to deliver the gene interfering agents to appropriate cells in a way that is tissue/cell specific, efficient and safe. Many of the currently used vectors are based on attenuated or modified viruses, or synthetic vectors in which complexes of DNA, proteins, and/or lipids are formed in particles, and tissue-specific vectors have been only partially obtained by using carriers that specifically target certain cell types. As such, efficient and targeted delivery of M1GS sequences to specific cell types and tissues in vivo is central to developing this technology for gene targeting applications. Invasive bacteria, such as Salmonella, possess the ability to enter and transfer genetic material to human cells, leading to the efficient expression of transferred genes. Attenuated Salmonella strains have earlier been shown to function as a carrier system for delivery of nucleic acid-based vaccines and anti-tumor transgenes. Salmonella-based vectors are low cost and easy to prepare. Furthermore, they can be administrated orally in vivo, a non-invasive delivery route with significant advantage. Thus, Salmonella may represent a promising gene delivery agent for gene therapy. Scientists at UC Berkeley have developed a novel attenuated strain of Salmonella, SL101, which exhibited high gene transfer activity and low cytotoxicity/pathogenicity while efficiently delivering ribozymes, for expression in animals. Using MCMV infection of mice as the model, they demonstrated that oral inoculation of SL101 in animals efficiently delivered RNase P-based ribozyme sequence into specific organs, leading to substantial expression of ribozyme and effective inhibition of viral infection and pathogenesis. This strategy could easily be adopted deliver other gene targeting technologies.

Diagnostic and Screening Methods for Atopic Dermatitis

Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the “atopic march.” Signaling between epithelial cells and innate immune cells via the cytokine Thymic Stromal Lymphopoietin (TSLP) is thought to drive AD and the atopic march. TSLP is up regulated in atopic dermatitis patients and is thought to act on immune cells to trigger atopic dermatitis. Scientists at UC Berkeley discovered that TSLP also activates a subset of sensory neurons to signal itch by acting on TSLPR, which signals to TRPA1. They demonstrated that sensory neurons that transmit itch signals in AD are the only instance of signaling between TSLPR and TRPA1 in the same cell type. Therefore, blocking the signaling between TSLPR and TRPA1 is a novel and specific target for therapeutics for itch in atopic dermatitis. They also discovered that the Orai I/Stim I pathway triggers expression and secretion of TSLP. This pathway has never been directly demonstrated in human primary keratinocytes and has never before been linked to TSLP. Decreasing expression of Orai I or stim I using siRNA, or the downstream transcription factor, NFATc I, significantly attenuates TSLP secretion, as proven in mice studies. Thus inhibition of Orai I/Stim I/NFATc I signaling pathway is a novel target for therapeutics for itch in atopic dermatitis.

New Borylated Heterocycles: Indoles, Isoxazoles, Lactones, and Benzofurans, and the Methods to Make Them (related to UC Case 2013-921)

Boron building blocks play a key role in modern organic chemistry, especially in drug design and materials synthesis. Methods to generate heterocycles and borylated compounds in the same synthetic step are largely unknown; the ability to do both increases efficiency and rapidly builds molecular complexity while providing access to previously unavailable building blocks.

X-Ray-Triggered Release of Drugs from Nanoscale Drug Carriers

Researchers at the University of California, Davis have identified a means by which large quantities of inactive drugs (particularly chemotherapeutics) can be delivered by nanoscale drug carriers to a target location where they can be rendered active by X-rays.

A Method to Identify Novel Glucocorticoid Receptor Modulators

This technology establishes a novel method to identify compounds that are either selective or non-selective modulators of glucocorticoid receptor signaling.

Endochondral Tissue Engineering for Vascularized Bone Regeneration

The invention identified a novel translational technique to repair/regenerate damaged bone tissue using a cartilage-derived graft.

New Therapeutic Use of Existing Compounds to Treat Hearing Loss

This technology can effectively slow or prevent hearing loss by stabilizing calcium fluxes in and out of intracellular organelles using known compounds.

Chronic Villus Derived Stem Cells for Autologous Prenatal Therapy of Hemophilia A

Researchers at the University of California, Davis have developed a method and composition using chorionic villus-derived stem cells that transgenically express Factor VIII for the treatment and prevention of hemophilia A (HA).

Small Molecule Activators of the Proteasome

This technology describes small molecule activators of the proteasome pathway.

Plastic Antibodies

Synthetic polymer nanoparticles (NPs) capable of recognizing specific biomacromolecules and can be used as substitutes for natural antibodies.

Plastic Antibodies for Neutralizing Venom

Envenomation caused by a bite or sting from a venomous or insect is a significant cause of death and disfigurement in the global community. The invention described herein is a treatment for envenomation that is fully synthetic and universal antibody for binding and sequestering the toxins from an infected individual.

Monoclonal Antibody Against Cer164 (Clone 11)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against ATR-IP (Clone 5)

Mouse monoclonal antibody against the human ATR-interacting protein (ATR-IP). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against Cer164 (Clone 26)

Mouse monoclonal antibody against the human centrosomal protein 164kDa (Cep164). This antibody binds to the phosphorylation site of Cep164 and has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against PNPase (Clone 4C11)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibody Against Pnpase (Clone 2A2)

Mouse monoclonal antibody against the human mitochondrial polyribonucleotide nucleotidyltransferase 1 (PNPase). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Monoclonal Antibodies Against Spc24/25 (Clone 2A10)

Mouse hybridoma cell line secret antibody against the human Kinetochore protein Spc24 (SPC24) and Kinetochore protein Spc25 (SPC25). This antibody has been tested for use in immunocytochemistry/immunofluorescence, immunoprecipitation, and western blot.

Delivery Module for Delivering Biotherapeutics Throughout the Body

Researchers at the University of California, Davis have developed a robust and broadly applicable system for the delivery of peptide and oligonucleotide biotherapeutics.

  • Go to Page:

University of California
Innovation Alliances and Services

1111 Franklin Street, 5th Floor,Oakland,CA 94607-5200 |
http://www.ucop.edu/ott/
Tel: 510.587.6000 | Fax: 510.587.6090 | UC.technologies@ucop.edu