Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Therapeutics

Categories

[Search within category]

A New Preventive And Therapeutic Strategy For Liver Cancer

While the overall cancer incidences and mortality are decreasing, primary liver cancer, in particular hepatocellular carcinoma (HCC), is increasing rapidly  and has become the second leading cause of cancer-related death worldwide attributing to the rise of metabolic disorders, including alcoholic and non-alcoholic fatty liver diseases, and viral hepatitis. The significance for development of an effective prevention strategy cannot be over-emphasized, given the extremely poor prognosis of liver cancer patients at the advanced stages and the rapidly expanding population with chronic liver diseases and at high risk for subsequent liver tumorigenesis. Unfortunately, this rapid increase of the malignant disease is unmet by more efficient therapeutics in the clinic.

A Photo-Activated Transcription System for Controlling Cas9 Utilizing Red/Far Red Light

The type II bacterial clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9), referred to as CRISPR-Cas9, serves as a breakthrough technology and platform that is used for genome editing and transcriptional modulation. Recent work has shown that this technology has be adapted to examine the temporal regulation of transcriptional repression or activation by Cas9-based systems utilizing either drugs or via optical regulation.  

NOVEL BRAIN TECHNOLOGY FOR THE TREATMENT OF NEUROPSYCHIATRIC DISORDERS USING ELECTRICAL STIMULATIONS

This invention is a novel technology developed to treat a patient’s neurological and/or psychiatric conditions. It consists of a system of implantable devices and computational algorithms that not only has autonomous control in sensing and stimulation of electrical signals in the patient’s brain, but also enables interactions with the external environment, thereby enhancing training and learning.

A Potent and Selective FXIa Inhibitor as a Next-generation Antithrombotic Drug

UCSF partnered with Pfizer’s Centers for Therapeutic Innovation (CTI) to identify an IND-ready antibody directed towards the treatment of thrombotic disease. The asset is a fully human antibody targeting the coagulation cascade serine protease FXIa for currently underserved thrombotic disease indications. A potent reversal agent has also been developed.

Targeted Inhibition of Human Multiple Myeloma

UCLA researchers in the Department of Medicine have discovered a novel mechanism involving Eph receptor/ephrin ligand interaction, that regulates human multiple myeloma growth and repopulation in vivo.

Inhibitors Of Zika Virus

UCLA researchers in the Department of Psychiatry and Biobehavioral Sciences, Department of Radiation Oncology and Department of Pathology have identified sulfonamide-based small molecules that show anti-Zika activity at low nanomolar range.

Pegylated Pleiotrophin (PEG-PTN) Promotes Hematopoietic Stem Cell Expansion and Hematopoietic Regeneration

UCLA researchers in the Department of Medicine have developed a novel pegylated recombinant PTN molecule which is capable of unique efficacy as a therapeutic molecule to promote hematopoietic reconstitution in patients.

Automated Beam Orientation and Scanning Spot Spacing Optimization for Robust Heavy Ion Radiotherapy Therapy

UCLA researchers in the Department of Radiation Oncology have developed a new method to automate and optimize heavy ion beam radiotherapeutic techniques for the treatment of cancer.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Diagnosis and Treatment of Arteriovenous Malformations

UCLA researchers in the Departments of Molecular, Cell, and Development Biology & Surgery have identified Angiopoietin 2 (Ang-2) as a marker and potentially a strong contributing factor to the clinical presentation of pulmonary arteriovenous malformations.

Novel Inhibitor of HIV Replication

UCLA researchers in the David Geffen School of Medicine have discovered a new small molecule inhibitor for HIV-1 replication.

AGPAT5 as a Molecular Mediator of Insulin Resistance

UCLA researchers in the Departments of Medicine and Cardiology have identified a novel gene and pathway in the regulation of insulin sensitivity and discovered an inhibitor of this gene useful for treating AGPAT5-related diseases.

Small Molecule Regulators of let-7 MicroRNA Targets in Acute Myeloid Leukemia Cancer Stem Cells

UCLA researchers have identified a class of small molecule phosphodiesterase inhibitors that suppress let-7 target genes and inhibit cell growth in acute myeloid leukemia cancer cell lines.

Mucoadhesive Devices for Oral Delivery of Various Active Agents

Effective and easily accepted system of oral delivery of therapeutic drugs.

Method for creating a macular/retinal degeneration animal model

Researchers at UCI have developed an animal model that mimics the onset and progression of age-related macular degeneration, an incurable disease that is the fourth-leading cause of blindness globally. The model serves as a means for testing the efficacy of possible treatments and cures.

A New Therapeutic Approach To Create And Exploit Metabolic Vulnerabilities In Malignant Glioma And Other Cancers

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a novel cancer therapeutic approach that targets both metabolism and cell death signaling pathways, creating a synergistic killing effect that vastly increases treatment efficacy.

Pathway-Dependent Inhibition Of Proteopathic Seed Transmission

UCLA researchers in the Department of Neurology have developed a novel approach to stop the propagation of proteopathic diseases, which could be applied to wide range of neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease.

Bioorthogonally-Engineered Extracellular Vesicles for Applications in Detection and Therapeutic Delivery

Extracellular vesicles (EVs) are promising as drug delivery carriers because they are inherently biocompatible, It would be desirable to efficiently, specifically, and rapidly change the EVs surface presentation to program the interactions with its target cells. Inventors at UC Irvine have developed a strategy for functionalizing the cellular membranes of EVs with precision and ease.

Antimicrobial, Stimuli-responsive Polysaccharide

State of the art antimicrobial therapeutics, while effective and promising, remain only short-term solutions to the overall challenge of drug-resistant microbes. UCI researchers have developed a chitosan-based nanoantibiotic that is non-toxic and carries potential for broad spectrum use.

Biomarkers for Port Wine Stain and Related Syndromes

Researchers at the University of California, Irvine (UC Irvine) have discovered specific biomarkers that will enable innovations in diagnosis, prognosis, monitoring, and therapy of PWS and other related syndromes.

Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation, so there is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).   Researchers have shown that Class 2 CRISPR Cas protein and their variants can be used in a complex for specific binding and cleavage of DNA. The Class 2 CRISPR Cas complex utilizes a novel RNA and a guide RNA to perform double stranded cleavage of DNA and the complex is expected to have a wide variety of applications in genome editing and nucleic acid manipulation. 

A High Dynamic-Range Sensing Front-End For Neural Signal Recording Systems

UCLA researchers in the Department of Electrical Engineering have invented a novel neural recording chopper amplifier for neuromodulation systems that can simultaneously record and stimulate.

Immunotherapy Against Aß-Mediated Inhibition of ADAM10 Activity

UCLA researchers in the Department of Neurology have developed a novel immunotherapy targeting a previously unexplored pathway of Aβ toxicity in Alzheimer’s disease.

CRISPR CASY COMPOSITIONS AND METHODS OF USE

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation, so there is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).   Previously UC Berkeley researchers discovered a new type of Cas protein, CasY (also referred to as Cas 12d protein).  CasY is short compared to previously identified CRISPR-Cas endonucleases, and thus use of this protein as an alternative provides the advantage that the nucleotide sequence encoding the protein is relatively short.  CasY utilizes a guide RNA to perform double stranded cleavage of DNA. The researchers introduced CRISPR-CasY into E. coli, finding that they could block genetic material introduced into the cell.  Further research results indicated that CRISPR-CasY operates in a manner analogous to CRISPR-Cas9, but utilizing an entirely distinct protein architecture containing different catalytic domains.   CasY is also expected to function under different conditions (e.g., temperature) given the environment of the organisms that CasY was expressed in.  Similar to CRISPR Cas9, CasY enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation. Recent studies have shown that the CasY complex utilizes a novel RNA, in addition to the guide RNA, to perform double stranded cleavage of DNA. Similar to CRISPR Cas9, CasY enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.   

Immunotherapy for Treatment of Neuromyelitis Optica (NMO)

This invention comprises compositions and methods for treatment of neuromyelitis optica (NMO) spectrum disorders using anti-aquaporin-4 (AQP4) antibody lacking effector function.

  • Go to Page: