Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Other


[Search within category]

A Transparent, Self-Healing, Highly Stretchable Ionic Conductor

Researchers at the University of California, Riverside have developed a transparent, highly stretchable, self-healing, ionic conductor.  The conductor is comprised of a polar polymer and an ionic salt solution. The material is held together via charge interactions between these two components, which prevents leakage of the ionic solution out of the material. This material can tolerate strains above 5000% and maintains an optical transmittance of 92%. Additionally, the material is spontaneously reversible (goes back to its original shape) for strains under 50%.  When a sample of this material is cut into two pieces and connected together, the sample spontaneously self-healed under ambient conditions within 24 hours.   Fig. 1 Photos of a healed material sample in the non-deformed state and stretched to five times its original length.   Fig. 2 Optical microscope images of a cut material sample after different healing times at room temperature. The damaged sample fully healed after 24 hours. Scale bar is shown at 500 μm.   Fig. 3 Healing efficiency (recovered fracture toughness) at different ambient temperatures

Selective Voltage Gated KV1.3 Potassium Channel Inhibitors

Researchers at the University of California, Davis, have discovered a composition of 5-phenoxyalkoxypsoralens that inhibits potassium channels to treat autoimmune diseases and disorders that involve abnormal homeostasis, body weight and peripheral insulin sensitivity.

Antisense Oligonucleotide Therapy for B Cell Mediated Cancers

Researchers at the University of California, Davis have developed a targeted therapy using an antisense oligonucleotide (ASO) to treat precursor B cell (pre-B) acute lymphoblastic leukemia (ALL).

Lensfree Tomographic Imaging

UCLA researchers in the Department of Electrical Engineering have developed a system for lens-free tomographic imaging.

Inhibition of Pyruvate Oxidation to Promote Hair Growth

UCLA researchers in the departments of Molecular, Cell & Developmental Biology and Biological Chemistry have elucidated a novel mechanism by which pyruvate oxidation can be inhibited in order to promote hair growth.

Algorithm for Diabetes Management and Control

A number of technologies have been developed that optimize the process of managing blood sugar and administering insulin.  

Capture device for small urinary tract stones

The invention is a surgical device designed to remove miniature fragments of uroliths that are less than 2 mm in size. Through the invention’s novel design, such small fragments are captured in the device which will then be easily removed by the surgeon. Removing small stone fragments will reduce the need for future medical procedures.

Obstruction Prevention Airway Collar

Though deep sedation is a routine part of many medical procedures, patients under anesthesia are susceptible to airway obstruction as their throat and tongue muscles relax. Most common methods to prevent obstruction are complicated and carry additional risks. Researchers at UCI have developed a safe and comfortable medical collar that maintains patients’ airways and is entirely adjustable.

Sonification-Facilitated Cognitive Training System to Enhance Visual Learning and Memory

UCLA researchers in the Department of Psychology have developed a new cognitive training tool to enhance visual learning and memory using sound.

Near-Realistic Sports Motion Analysis and Activity Monitoring

UCLA researchers in the Department of Computer Science have developed a new technology to fight the growing obesity epidemic by encouraging exercise in video games.

Colorimetric Sensing Of Amines

An affordable and easily synthesized indicator that can be applied to monitor reaction progress in a system using only one inexpensive and non-toxic agent.

Automated Beam Orientation and Scanning Spot Spacing Optimization for Robust Heavy Ion Radiotherapy Therapy

UCLA researchers in the Department of Radiation Oncology have developed a new method to automate and optimize heavy ion beam radiotherapeutic techniques for the treatment of cancer.

Diagnosis and Treatment of Arteriovenous Malformations

UCLA researchers in the Departments of Molecular, Cell, and Development Biology & Surgery have identified Angiopoietin 2 (Ang-2) as a marker and potentially a strong contributing factor to the clinical presentation of pulmonary arteriovenous malformations.

Compositions Of Polyion Complex Polypeptide Hydrogels

UCLA researchers in the Department of Bioengineering have developed a new class of cell-compatible copolypeptide hydrogels that possess chain conformation directed polyion complex (PIC) supramolecular architectures.

An MR-Compatible System for Motion Emulation

Researchers at UCLA from the Departments of Mechanical Engineering and Radiological Sciences have developed a magnetic resonance (MR) compatible device that can emulate respiratory motion.

Laser-Assisted Intraocular Surgical Alignment

UCLA researchers in the department of Mechanical Engineering have developed an automated procedure for aligning a remote center of motion to a surgical incision point for robot-assisted surgeries.

Antimicrobial, Stimuli-responsive Polysaccharide

State of the art antimicrobial therapeutics, while effective and promising, remain only short-term solutions to the overall challenge of drug-resistant microbes. UCI researchers have developed a chitosan-based nanoantibiotic that is non-toxic and carries potential for broad spectrum use.

Biomarkers for Port Wine Stain and Related Syndromes

Researchers at the University of California, Irvine (UC Irvine) have discovered specific biomarkers that will enable innovations in diagnosis, prognosis, monitoring, and therapy of PWS and other related syndromes.

Electrode Agnostic, Supply Variant Stimulation Engine For Implantable Neural Stimulation

UCLA researchers in the Department of Electrical Engineering have invented an innovative universal agnostic electrode for implantable neural stimulation and sensing.

Load Adaptive, Reconfigurable Active Rectifier for Multiple Input Multple Output (MIMO) Implant Power Management

UCLA researchers in the Department of Electrical Engineering have invented a novel full-fledged implant power management unit, which is highly programmable and can process multiple input power deliveries on-chip.

A High Dynamic-Range Sensing Front-End For Neural Signal Recording Systems

UCLA researchers in the Department of Electrical Engineering have invented a novel neural recording chopper amplifier for neuromodulation systems that can simultaneously record and stimulate.

Epigenetic Target for HIV and Latent Virus Eradication

Researchers at the University of California, Davis, have identified a target for therapeutic intervention and agents that disrupt HIV latency in patients under suppressive HIV therapy. It amplifies the effects of other latency reversal agents and primes the cells harboring the virus for immune clearance and death.

Predictive Optimization Of Pharmeceutical Efficacy

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a machine learning platform to virtually screen combinatorial drug therapies.

Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning

UCLA researchers have developed a novel method for computational sensing using low-cost and mobile plasmonic readers designed by machine learning.

Integrated Electrowetting Nanoinjector and Aspirator

Gene therapy applications necessitate cell transfection techniques for delivering biomaterial into multiple or a single cell(s). The global market for transfection technologies can be worth more than half a billion by 2017. Current viral and chemical transfection techniques have limited ease of fabrication, transfection efficiency, dosage control, and cell viability. The invention discloses a simple yet efficient technique for nanoinjection of material into a single cell with high transfection efficiency, controlled dosage delivery, and full cell viability.

  • Go to Page: