Please login to create your UC TechAlerts.
Request a new password for
Required
Find technologies available for licensing from all ten University of California (UC) campuses.
No technologies match these criteria. Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above
AAV-Based Gene Therapy for Glioblastoma Treatment Using Interferon Cytokines
Brief description not available
Enhancing Cancer Immunotherapy with Modified Adaptor Protein and CAR-NK Cell Technology
Rippled Beta-Sheets From Mixed Chirality Linear And Cyclic Peptides
Researchers at UC Santa Cruz have expanded the knowledge on the rippled β-sheet, a protein structural motif formed by certain racemic peptides. Rippled β-sheets already show potential for Alzheimer’s research and drug delivery and leads to formation of hydrogels with enhanced properties. Researchers at UC Santa Cruz have further added to the structural foundation of rippled β-sheets, better understanding how rippled β-sheet formation can be controlled at the molecular level.
Next-Generation Monoclonal Antibody Therapy Targeting High-Risk Tumors
Affinity-Matured Anti-Cd72 Nanobodies For Next-Generation CAR-T Immunotherapies
An off-the-shelf dendritic cell-based cancer vaccine
Piezoelectric Polymers
The challenge in utilizing α-Linolenic acid (ALA) for medical adhesives has been its poor water solubility and the high hydrophobicity of poly(ALA), typically necessitating elevated temperatures, organic solvents, or complex preparation methods for tissue application. UC Berkeley researchers have developed ALA-based powder and low-viscosity liquid superglues that overcome this limitation by polymerizing and bonding rapidly upon contact with wet tissue. The versatile adhesives are formulated using a monomeric mixture of ALA, sodium lipoate, and an activated ester of lipoic acid. These adhesives demonstrate high flexibility, cell and tissue compatibility, biodegradability, and potential for sustained drug delivery as a small molecule regenerative drug was successfully incorporated and released without altering the adhesive's properties. Additionally, the inherent ionic nature of the adhesives provides high electric conductivity and sensitivity to deformation, enabling their use as a tissue-adherent strain sensor.
Medicinal Adhesive Compositions
Current α-linolenic acid (ALA)-based medical adhesives are limited by ALA's poor water solubility and poly(ALA)'s hydrophobicity, often requiring elevated temperatures, organic solvents, or complex preparations for delivery to biological tissue. This innovation reports on ALA-based powder and low-viscosity liquid superglues that polymerize and bond rapidly upon contact with wet tissue. Developed by UC Berkeley researchers, the versatile adhesives use a monomeric mixture of ALA, sodium lipoate, and an activated ester of lipoic acid, which grants them high flexibility as confirmed by stress-strain measurements on wet adhesives. The adhesive is cell and tissue-compatible, biodegradable, and can sustain drug delivery as a small molecule regenerative drug was successfully incorporated and released without altering its physical or adhesive properties. Furthermore, the inherent ionic nature of the adhesive gives it high electric conductivity and sensitivity to deformation, enabling its use as a tissue-adherent strain sensor.