Available Technologies

Find technologies available for licensing from all ten University of California (UC) campuses.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

The Isolated Heparin-binding Domain (HBD) of VEGF165 and the Isolated D1 Domain of VEGFR2 (KDR)

Researchers at the University of California, Davis have developed recombinant fusion protein compositions that inhibit pathological angiogenesis by targeting VEGF165-KDR interactions to treat cancers and related diseases.

pH Signaling and Regulation in Pyridinium Redox Flow Batteries

The implementation of cost-effective and reliable energy storage solutions, such as redox flow batteries, is often hindered by the complexity and expense of accurately monitoring their state of charge (SOC) and state of health (SOH). To address this, a novel approach using low-cost management systems and methods has been developed for electrochemical cells based on viologen, particularly pyridinium redox flow batteries. This innovation centers on pH signaling and regulation to enable real-time SOC and SOH monitoring. The viologen species' electrochemical processes naturally induce localized pH changes, and by monitoring and regulating the pH within the cell, researchers can obtain immediate, actionable data on the battery's operating condition. This pH-based system offers a simple, integrated, and economical alternative to conventional, often more complex, monitoring techniques.

Thiazole-Based Covalent Organic Frameworks For Low-Humidity Water Adsorption

The critical challenge of providing clean, potable water in arid and semi-arid regions can be addressed by technologies that efficiently harvest atmospheric water, particularly under low-humidity conditions. UC Berkeley researchers have developed novel thiazole-based Covalent Organic Frameworks (COFs) that serve as highly efficient sorbents for this purpose. These COFs are crystalline, porous materials characterized by high porosity, permanent pore structures, and a chemically tunable nature. The disclosed COFs demonstrate a significant advantage over alternatives by exhibiting a low-humidity water uptake onset, coupled with fast adsorption kinetics, a high water working capacity, and excellent cycling stability. Furthermore, the development includes scalable synthetic methods, such as microwave-assisted and reflux routes, which enable gram-level, practical production.

Small Molecule Activators Of GTP Hydrolysis For Mutant Ras-Driven Cancer

Oncogenic mutations in the Ras family of small GTPases (like K-Ras, H-Ras, and N-Ras) are major drivers of many human cancers, yet they remain one of the most challenging targets in oncology. These mutations often trap the Ras protein in its active, GTP-bound state, leading to continuous, unchecked cell proliferation. To address this, UC Berkeley researchers have developed a novel class of Small Molecule Activators of GTP Hydrolysis for Mutant Ras-driven Cancer.These compounds accelerate the natural, but often disabled, guanosine triphosphate (GTP) hydrolysis process in mutant Ras, essentially forcing the protein back into its inactive, GDP-bound state. The compounds utilize a modular, "plug-and-play" structure. This modular platform is unique in its ability to reactivate the intrinsic GTPase function of mutant Ras, offering a promising, direct-acting therapeutic strategy against previously intractable Ras-driven cancers.

Methods of Improving Cancer Immunotherapy

Researchers at the University of California, Davis have developed methods that combine immunotherapeutic agents with dual inhibitors to enhance cancer treatment efficacy and prolong patient survival.

Enabling Partial Soft-Switching Within Regulating Switched Capacitor Converter

High-conversion-ratio power converters used in compact Point-of-Load (PoL) applications, such as data centers or portable electronics, often face the challenge of large size and weight due to the necessary energy-storage components, particularly flying capacitors, while also struggling with switching losses that reduce efficiency. This innovation, developed by UC Berkeley researchers, addresses these issues with a novel regulating hybrid switched-capacitor (HSC) power converter topology referred to as a "Dual Inductor Switching Bus Converter" (DISB converter). The DISB converter combines an initial 2:1 switched-capacitor conversion stage with a Symmetric Dual-Inductor Hybrid (SDIH) conversion stage, capitalizing on the benefits of both. The initial 2:1 voltage reduction significantly reduces the overall volume and weight of the flying capacitors, while the SDIH stage contributes a reduced component count and an excellent switch stress figure of merit. Crucially, a proposed auxiliary circuit block enables near-zero-voltage conditions (partial soft-switching) within the initial 2:1 stage, which significantly improves the converter's overall efficiency.

Optimization for Multi-objective Environmental Policymaking

Traditional environmental policymaking often struggles to efficiently target interventions to achieve multiple, complex air quality goals simultaneously across a geographic area. This innovation, developed by UC Berkeley researchers, addresses this challenge by providing a sophisticated, multi-objective optimization method for targeted reduction of air pollution. The method generates a comprehensive mitigation pathway by integrating several modules: a forward module to model pollutant concentrations, a target concentration surface that defines the policy goals, a prioritization module to assess uncertainty and importance via a prioritization covariance matrix, and a Bayesian inversion module to estimate optimum emissions required to meet the target. This systematic, data-driven approach culminates in a mitigation pathway that guides the performance of specific pollution control measures, offering a significant advantage over conventional, less targeted policy-making by ensuring resources are directed where they will have the maximum environmental impact.

Inferring Dynamic Hidden Graph Structure in Heterogeneous Correlated Time Series

Current methods for treating nervous system disorders often rely on generalized approaches that may not optimally address the individual patient's specific pathology, leading to suboptimal outcomes. This innovation, developed by UC Berkeley researchers, provides a method to identify the most critical, or "influential," nodes within a patient's functional connectivity network derived from time-series data of an organ or organ system. The method involves obtaining multiple time-series datasets from an affected organ/system, using them to map the functional connectivity network, and then determining the most influential nodes within that network. By providing this specific and personalized information to a healthcare provider, a treatment can be prescribed that precisely targets the respective organ corresponding to these influential nodes. This personalized, data-driven approach offers a significant advantage over conventional treatments by focusing intervention on the most impactful biological targets, potentially leading to more effective and efficient patient care.