Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Multimodal Coatings For Heat And Fire Resistance

Brief description not available

Highly Tunable Magnetic Liquid Crystals

Brief description not available

(SD2020-421) Virtual Electrodes for Imaging of Cortex-Wide Brain Activity: Decoding of cortex-wide brain activity from local recordings of neural potentials

As an important tool for electrophysiological recordings, neural electrodes implanted on the brain surface have been instrumental in basic neuroscience research to study large-scale neural dynamics in various cognitive processes, such as sensorimotor processing as well as learning and memory. In clinical settings, neural recordings have been adopted as a standard tool to monitor the brain activity in epilepsy patients before surgery for detection and localization of epileptogenic zones initiating seizures and functional cortical mapping. Neural activity recorded from the brain surface exhibits rich information content about the collective neural activities reflecting the cognitive states and brain functions. For the interpretation of surface potentials in terms of their neural correlates, most research has focused on local neural activities.   From basic neuroscience research to clinical treatments and neural engineering, electrocorticography (ECoG) has been widely used to record surface potentials to evaluate brain function and develop neuroprosthetic devices. However, the requirement of invasive surgeries for implanting ECoG arrays significantly limits the coverage of different cortical regions, preventing simultaneous recordings from spatially distributed cortical networks. However, this rich information content of surface potentials encoded for the large-scale cortical activity remains unexploited and little is known on how local surface potentials are correlated with the spontaneous neural activities of distributed large-scale cortical networks. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Templated Synthesis Of Metal Nanorods

Brief description not available

Magnetically Responsive Photonic Nanochains

Brief description not available