Please login to create your UC TechAlerts.
Request a new password for
Required
A neuronal circuit analysis platform for drug discovery
Researchers at UC Irvine have characterized an electrophysiological-based drug discovery approach that offers a new modality with which to screen potential therapeutics and characterize mutations. This new level of analysis utilizes elements that are shared between rodents and humans, improving upon the uncertainties associated with rodent behavior. It also incorporates the full complexity of operations in a single assay, while rapidly specifying site(s) of action, thereby accelerating R&D for psychiatric illnesses.
Highly Efficient Glycosylation Chemistry that Enables Automatic Carbohydrate Synthesis
Brief description not available
Virtual Reality For Anhedonia Program
UCLA researchers in the Department of Psychology have developed a behavioral training program for the improvement of anhedonia.
Dual-Enzyme Responsive Peptides
UCLA researchers in the Department of Chemistry & Biochemistry have developed a dual-enzyme responsive peptide system that requires sequential digestion by two separate enzymes for cleavage at the C-terminal position of lysine.
Noncrushable/Nonabusable Pill Formulations
UCLA researchers in the Department of Chemistry & Biochemistry have developed novel abuse-deterrent opioid formulations from elastomers that resist crushing at room temperature and upon heating or cooling. The formulation also contains a dual-enzyme responsive system whereby sequential digestion by two separate enzymes found in the stomach/intestines together cleave the peptide linkage allowing the drug to be fully released.
Novel Anti-Bacterial, Anti-Fungal Nanopillared Surface
Medical devices are susceptible to contamination by harmful microbes, such as bacteria and fungi, which form biofilms on device surfaces. These biofilms are often resistant to antibiotics and other current treatments, resulting in over 2 million people per year suffering from diseases related to these contaminating microbes. Death rates for many of these diseases are high, often exceeding 50%. Researchers at UCI have developed a novel anti-bacterial and anti-fungal biocomposite that incorporates a nanopillared surface structure that can be applied as a coating to medical devices.
Sieve Container For Contactless Media Exchange For Cell Growth
Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.
Functional 3D Microtissues Within a Microfluidic Perfusion Device
Novel Inhibitors Of Endocannabinoid Inactivation for Treatment of Pain, Anxiety and Depression
Bioactive lipids, including anandamide (AEA), are important signaling molecules in humans. Acting through CB1 cannabinoid receptors in the brain and peripheral tissues, the local concentrations of these lipids have effects on several areas of human health including pain sensation, inflammation, appetite regulation, anxiety, and depression. The regulation of these lipids is partially controlled by their degradation rate by the enzyme fatty acid amide hydrolase (FAAH). The present portfolio of inventions provides novel small-molecule inhibitors FAAH, including molecules that are limited to peripheral FAAH inhibition as well as molecules improved for oral bioavailability. These compounds have been tested in a number of animal models and one molecule has entered clinical trials in humans. This portfolio includes molecules with IC50 values at single digit nanomolar and in some cases, less than 1.0 nanomolar concentrations in vitro.
Ultra-sensitive androgen assay
This invention is a novel assay to detect and quantify androgen levels, as low as 1.5 ng/dl, in blood or serum samples.
Successful web-based smoking cessation program yields 20% abstinence rates at one year.