Browse Category: Imaging > Other

[Search within category]

(SD2022-255) A robust approach to camera radar fusion

Researchers from UC San Diego have developed RadSenNet, a new approach of sequential fusing of information from radars and cameras. The key idea of sequential fusion is to fundamentally shift the center of focus in radar-camera fusion systems from cameras to radars. This shift enables their invention (RadSegNet) to achieve all-weather perception benefits of radar sensing. Keeping radars as the primary modality ensures reliability in all situations including occlusions, longrange and bad weather.

Unsupervised Positron Emission Tomography (PET) Image Denoising using Double Over-Parameterization

Researchers at the University of California, Davis, have developed a novel imaging system that improves the diagnostic accuracy of PET imaging. The system combines machine learning and computed tomography (CT) imaging to reduce noise and enhance resolution. This novel technique can integrate with commercial PET imaging systems, improving diagnostic accuracy and facilitating superior treatment of various diseases.

Headset with Incorporated Optical Coherence Tomography (OCT) and Fundus Imaging Capabilities

Researchers at the University of California, Davis, have developed a headset (e.g., virtual reality headset) in which two imaging modalities, optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), are incorporated with automated eye tracking and optical adjustment capabilities providing a fully automated imaging system in which patients are unaware that images of the retina are being acquired. Imaging takes place while the patient watches a soothing or entertaining video.

Metasurface, Metalens, and Metalens Array with Controllable Angular Field-of-View

Researchers at the University of California, Davis have developed an optical lens module that uses a metalens or a metalens array having a controllable angular field-of-view.

High Resolution, Ultrafast, Radiation-Background Free PET

Researchers at the University of California, Davis, have developed a positron emission tomography (PET) medical imaging system that allows for higher 3D position resolution, eliminates radiation background, and holds a similar production cost to existing technologies.

A New Device for Tissue Imaging: Phasor-Based S-FLIM-SHG

An innovative microscope integrating HSI, FLIM, and SHG for advanced optical metabolic imaging.

Compact Catadioptric Mapping Optical Sensor For Parallel Goniophotometry

      Goniophotometers measure the luminance distribution of light emitted or reflected from a point in space or a material sample. Increasingly there is a need for such measurements in real-time, and in real-world situations, for example, for daylight monitoring or harvesting in commercial and residential buildings, design and optimization of greenhouses, and testing laser and display components for AR/VR and autonomous vehicles, to name a few. However, current goniophotometers are ill-suited for real-time measurements; mechanical scanning goniophotometers have a large form factor and slow acquisition times. Parallel goniophotometers take faster measurements but suffer from complexity, expense, and limited angular view ranges (dioptric angular mapping systems) or strict form factor and sample positioning requirements (catadioptric angular mapping systems). Overall, current goniophotometers are therefore limited to in-lab environments.      To overcome these challenges, UC Berkeley researchers have invented an optical sensor  for parallel goniophotometry that is compact, cost-effective, and capable of real-time daylight monitoring. The novel optical design addresses key size and flexibility constraints of current state-of-the-art catadioptric angular mapping systems, while maximizing the view angle measurement at 90°. This camera-like, angular mapping device could be deployed at many points within a building to measure reflected light from fenestrations, in agricultural greenhouses or solar farms for real-time monitoring, and in any industry benefitting from real-time daylight data.

Spatial Analysis of Multiplex Immunohistochemical Tissue Images

Researchers at the University of California, Davis have developed a semiautomated solution for identifying differences in tissue architectures or cell types as well as visualizing and analyzing cell densities and cell-cell associations in a tissue sample.

SPECTRAL DOMAIN FUNCTIONAL OCT and ODT

This technology revolves around Optical Coherence Tomography (OCT), a noninvasive imaging method that provides detailed cross-sectional images of tissue microstructure and blood flow. OCT utilizes either time domain (TDOCT) or Fourier domain (FDOCT) approaches, with FDOCT offering superior sensitivity and speed. Doppler OCT combines Doppler principles with OCT to visualize tissue structure and blood flow concurrently. Additionally, polarization-sensitive OCT detects tissue birefringence. Advanced methods aim to enhance the speed and sensitivity of Doppler OCT, crucial for various clinical applications such as ocular diseases and cancer diagnosis. Swept source FDOCT systems further improve imaging capabilities by increasing range and sensitivity. Overall, this technology represents significant advancements in biomedical imaging, offering insights into both structural and functional aspects of tissue physiology.

Imaging of cellular immune response in human skin

This patent application describes methods for non-invasive, label-free imaging of the cellular immune response in human skin using a nonlinear optical imaging system.

Non-Volatile Surface Tension-Driven Electrochemical Liquid Metal Actuator

UC Berkeley researchers have developed a surface-tension driven electrochemical liquid metal (LM) actuator without the gas-producing side-reaction. The actuator is and capable for fabrication/operation in ambient air for practical applications. A 2Å~4 LM droplet array is demonstrated to actuate by a low voltage of 3.5 V for a maximum force of ~8.5 mN and a displacement of 0.56 mm in only 1.75 s. With the favorable scaling law of surface tension, further downscaling could provide new opportunities in applications such as microrobotics, microfluidics, soft robotics, and so on.

System And Method For Tomographic Fluorescence Imaging For Material Monitoring

Volumetric additive manufacturing and vat-polymerization 3D printing methods rapidly solidify freeform objects via photopolymerization, but problematically raises the local temperature in addition to degree-of-conversion (DOC). The generated heat can critically affect the printing process as it can auto-accelerate the polymerization reaction, trigger convection flows, and cause optical aberrations. Therefore, temperature measurement alongside conversion state monitoring is crucial for devising mitigation strategies and implementing process control. Traditional infrared imaging suffers from multiple drawbacks such as limited transmission of measurement signal, material-dependent absorptions, and high background signals emitted by other objects. Consequently, a viable temperature and DOC monitoring method for volumetric 3D printing doesn’t exist.To address this opportunity, UC Berkeley researchers have developed a tomographic imaging technique that detects the spatiotemporal evolution of temperature and DOC during volumetric printing. The invention lays foundations for the development of volumetric measurement systems that uniquely resolve both temperature and DOC in volumetric printing.This novel Berkeley measurement system is envisaged as an integral tool for existing manufacturing technologies, such as computed axial lithography (CAL, Tech ID #28754), and as a new research tool for commercial biomanufacturing, general fluid dynamics, and more.

System And Method For Noise-Enabled Static Imaging Using Event Cameras

Dynamic Vision Sensors (DVS), also known as event cameras or neuromorphic sensors, enable extremely high temporal resolution and dynamic range compared to traditional sensors. However, DVS pixels only capture changes in intensity, which discards all static information. To overcome this issue, an additional photosensor array is needed either (1) in a two-sensor system or (2) combined into a single sensor with two-pixel technologies (DAVIS346). In both cases, the resulting system is bulkier, more complex to design, and more expensive to manufacture. UC Berkeley researchers have developed an event-based imaging system that can capture static intensity, thereby eliminating the need of such two-pixel technologies by extracting underlying static intensity information directly from DVS pixels. The researchers have also demonstrated the feasibility of this approach through the analysis of noise statistics in event cameras.

Computation Method For 3D Point-Cloud Holography

 The dynamic patterning of 3D optical point clouds has emerged as a key enabling technology in volumetric processing across a number of applications. In the context of biological microscopy, 3D point cloud patterning is employed for non-invasive all-optical interfacing with cell ensembles. In augmented and virtual reality (AR/VR), near-eye display systems can incorporate virtual 3D point cloud-based objects into real-world scenes, and in the realm of material processing, point cloud patterning can be mobilized for 3D nanofabrication via multiphoton or ultraviolet lithography. Volumetric point cloud patterning with spatial light modulators (SLMs) is therefore widely employed across these and other fields. However, existing hologram computation methods, such as iterative, look-up table-based and deep learning approaches, remain exceedingly slow and/or burdensome. Many require hardware-intensive resources and sacrifices to volume quality.To address this problem, UC Berkeley researchers have developed a new, non-iterative point cloud holography algorithm that employs fast deterministic calculations. Compared against existing iterative approaches, the algorithm’s relative speed advantage increases with SLM format, reaching >100,000´ for formats as low as 512x512, and optimally mobilizes time multiplexing to increase targeting throughput. 

Hot Forming of Curved Mirrors Without the Need for a Mandrel

Large format active or deformable mirrors can enable optical applications that are difficult to achieve with more conventional-sized deformable mirrors. In particular, adaptive secondary mirrors (ASMs) can be integrated into telescopes and provide adaptive optics corrections. However, making facesheets for ASMs is challenging. Current facesheet fabrication processes are costly and risky. Hot forming approaches for forming curved facesheets have been developed, but these methods typically require a mold for the facesheet to slump into.

(SD2022-180) Method of viral nanoparticle functionalization for therapy and imaging applications

Plant viral nanoparticles (plant VNPs) are promising biogenetic nanosystems for the delivery of therapeutic, immunotherapeutic, and diagnostic agents. The production of plant VNPs is simple and highly scalable through molecular farming in plants. Some of the important advances in VNP nanotechnology include genetic modification, disassembly/reassembly, and bioconjugation. Although effective, these methods often involve complex and time-consuming multi-step protocols.

Modular Piezoelectric Sensor Array with Beamforming Channels for Ultrasound Imaging

Researchers at the University of California, Davis have developed a large area sensor array for ultrasound imaging systems that utilizes high-bandwidth piezoelectric sensors and modular design elements.

High-Frequency Imaging and Data Transmission Using a Re-configurable Array Source with Directive Beam Steering

Researchers at the University of California, Davis have developed a reconfigurable radiator array that produces a high frequency directed beam via uninterrupted, scalable, electronic beam steering.

(SD2021-087) Bioinspired Wet Adhesives: Suction discs for adhesion to rough, delicate, and wet surfaces

Adhesion involves highly complex and hierarchical structures in nature, and by understanding the biological intricacies of such adhesive structures, one can improve engineered adhesives. The role of reversible adhesion in both the natural world and in engineering is to temporarily bind to a surface, providing the opportunity to detach and re-attach as needed. In nature, animals use attachment to enhance their fitness.  In robotics, reversible adhesion enables improved manipulation and locomotion by managing contact at the interface between the robot and its environment.

2-D Polymer-Based Device for Serial X-Ray Crystallography

Researchers at the University of California, Davis have developed a single-use chip for the identification of protein crystals using X-ray based instruments.

Deep Learning Techniques For In Vivo Elasticity Imaging

Imaging the material property distribution of solids has a broad range of applications in materials science, biomechanical engineering, and clinical diagnosis. For example, as various diseases progress, the elasticity of human cells, tissues, and organs can change significantly. If these changes in elasticity can be measured accurately over time, early detection and diagnosis of different disease states can be achieved. Elasticity imaging is an emerging method to qualitatively image the elasticity distribution of an inhomogeneous body. A long-standing goal of this imaging is to provide alternative methods of clinical palpation (e.g. manual breast examination) for reliable tumor diagnosis. The displacement distribution of a body under externally applied forces (or displacements) can be acquired by a variety of imaging techniques such as ultrasound, magnetic resonance, and digital image correlation. A strain distribution, determined by the gradient of a displacement distribution, can be computed (or approximated) from measured displacements. If the strain and stress distributions of a body are both known, the elasticity distribution can be computed using the constitutive elasticity equations. However, there is currently no technique that can measure the stress distribution of a body in vivo. Therefore, in elastography, the stress distribution of a body is commonly assumed to be uniform and a measured strain distribution can be interpreted as a relative elasticity distribution. This approach has the advantage of being easy to implement. The uniform stress assumption in this approach, however, is inaccurate for an inhomogeneous body. The stress field of a body can be distorted significantly near a hole, inclusion, or wherever the elasticity varies. Though strain-based elastography has been deployed on many commercial ultrasound diagnostic-imaging devices, the elasticity distribution predicted based on this method is prone to inaccuracies.To address these inaccuracies, researchers at UC Berkeley have developed a de novo imaging method to learn the elasticity of solids from measured strains. Our approach involves using deep neural networks supervised by the theory of elasticity and does not require labeled data for the training process. Results show that the Berkeley method can learn the hidden elasticity of solids accurately and is robust when it comes to noisy and missing measurements.

  • Go to Page: