Browse Category: Sensors & Instrumentation > Scientific/Research

[Search within category]

Micron-resolution malleable strain and pressure sensor

Scientists at UC Irvine have developed a sensitive, customizable, and user-friendly sensor for (1) strain detection as a result of cellular movement, (2) micro-fluidic device pressure detection, and (3) real-time monitoring of valve statuses in microfluidic chips. This research tool will provide new insights regarding cellular biophysics.

Biological and Hybrid Neural Networks Communication

During initial stages of development, the human brain self assembles from a vast network of billions of neurons into a system capable of sophisticated cognitive behaviors. The human brain maintains these capabilities over a lifetime of homeostasis, and neuroscience helps us explore the brain’s capabilities. The pace of progress in neuroscience depends on experimental toolkits available to researchers. New tools are required to explore new forms of experiments and to achieve better statistical certainty.Significant challenges remain in modern neuroscience in terms of unifying processes at the macroscopic and microscopic scale. Recently, brain organoids, three-dimensional neural tissue structures generated from human stem cells, are being used to model neural development and connectivity. Organoids are more realistic than two-dimensional cultures, recapitulating the brain, which is inherently three-dimensional. While progress has been made studying large-scale brain patterns or behaviors, as well as understanding the brain at a cellular level, it’s still unclear how smaller neural interactions (e.g., on the order of 10,000 cells) create meaningful cognition. Furthermore, systems for interrogation, observation, and data acquisition for such in vitro cultures, in addition to streaming data online to link with these analysis infrastructures, remains a challenge.

Advanced Potentiostat

During In the last few decades, the use of miniaturized electrochemical devices has grown rapidly and found diverse applications in scientific and consumer products. The process of developing specialized electrochemical devices is often time-consuming and expensive. Experimental setups involving electrochemistry often use specialized measurement equipment such as a potentiostat. A potentiostat is an analytical instrument that controls the voltage and current between two or more electrodes in a cell. The accuracy, precision, and flexibility of applying or measuring voltages and currents depends on the quality and design of the electronic hardware, which for commercially available potentiostats, often correlate with the device’s cost and architecture. Consequently, one of the challenges faced by today’s electrochemical research community is how to perform modern experimental designs with expensive, asynchronous, and inflexible potentiostats.

Ultra-fast Detection System

Detection of single ionizing particles at rates approaching the gigahertz (GHz) range per channel has potential for applications in medical imaging and treatment as well as particle and nuclear physics. Current ionizing particle detection systems detect with maximum frame rates of ~500 MHz. As accelerators (e.g. XFELs) are upgraded to deliver trains of pulses at faster rates, detection systems will need to keep pace. Methods and devices that can detect at GHz rates will be required to meet the demands of modern societal needs and equipment.

Full Signal Utilization In Charge Detection Mass Spectrometry

UC Berkeley researchers have developed several methods that take advantage of all of the information contained in ion signals in charge detection mass spectrometry (CDMS). Unlike most conventional types of mass spectrometry (MS), which rely on mass-to-charge ratio (m/z) measurements of ensembles of ions, CDMS instead makes direct measurements of the mass of individual ions. CDMS has recently gained significant popularity in the analysis of large biomolecules, nanoparticles, and nanodroplets because it is one of very few methods that can characterize these analytes. State-of-the-art CDMS instruments incorporate ion traps and signals from individual trapped ions are used to find the mass, charge, and energy of these ions. Previously used techniques have used Fourier transform (FT)-based analyses, but only use the fundamental and/or second harmonic frequency and amplitude as the basis of the measurement. The significant additional information contained in the higher order harmonic frequencies and amplitudes of the ion signal is fully utilized in the novel methods comprising this invention and large improvements in measurement uncertainties are realized as a result. 

Co-Wiring Method For Primitive Spatial Modulation

Dynamic patterning of light is used in a variety of applications in imaging and projection. This is often done by spatial light modulation, in which a coherent beam of input light is modified at the pixel level to create arbitrary output patterns via later interference. Traditional approaches to spatial light modulation suffer from a high operating burden, especially as the number of pixels increases, and incomplete coverage of the optical surface. This results in high device complexity, and cost, as well as enormous real-time computation requirements, reduced optical performance, and optical artifacts.To address these problems, researchers at UC Berkeley have developed a method for wiring groups of pixels, such as annular rings, parallel strips, or radial strips. This takes advantage of the fact that most spatial light modulation tasks can be accomplished by combining a number of simple “primitive phase profiles”, in which not all pixels need be independent of each other. In this co-wiring method, individual optical elements remain at the pixel level, but are wired together in a way that they move in precisely the coordinated manner to produce one of these primitive phase profiles. This allows for high frame rates, high coverage of the optical plane, and a degree of sensitivity impossible to produce with large, geometric optical elements that exist in prior art.

Pixel And Array Architecture For Spatial Light Modulation

Dynamic patterning of light is used in a variety of applications in imaging and projection. This is often done by spatial light modulation, in which a coherent beam of input light is modified at the pixel level to create arbitrary output patterns via later interference. Traditional approaches to spatial light modulation suffer from a fundamental restriction on frame rate which has led manufacturers to seek the diminishing returns of continually increasing pixel number, resulting in impractical device sizes, complexity, and cost, as well as enormous real-time computation requirements. Additionally, these devices inherently produce monochromatic and speckled frames due to the requirement that the input beam be coherent.To address these problems, researchers at UC Berkeley have developed a device which can perform spatial light modulation with a frame rate ~20 times higher than existing technologies. This allows for a smaller number of pixels to produce high resolution, full color images by interleaving images of different colors and scanning rapidly across a screen in a similar way to the operation of CRT televisions Researchers have also developed an efficient and robust fabrication method, which combined with the smaller pixel number of these devices could cause them to be much more cost effective than existing technologies.

Plasmofluidic Microlenses for Label-Free Optical Sorting of Bioparticles

Optical chromatography (OC) is an optofluidic technique enabling label-free fractionation of microscopic particles, e.g., bioparticles from heterogenous mixtures. This technique relies on a laser beam along a microfluidic channel to create opposing optical scattering and fluidic drag forces. Variable strength and balance of these forces may be harnessed for selective sorting of bioparticles based on their size, composition, and morphology. OC has been successfully applied to fractionation of blood components such as human erythrocytes, monocytes, granulocytes, and lymphocytes. OC offers unique capabilities as a modern separation technique, especially when combined with multi-stage sequential fractionation and microfluidic network-based purification approaches, and it particularly excels in distinguishing bioparticles with subtle differences. However, there are several key limitations with OC being widely adopted. In order to create strong optical scattering forces along the microfluidic channels, expensive and sophisticated laser sources must be precisely aligned along the fluidic channel with a well-controlled beam waist profile, requiring a complicated optical alignment procedure that employs multiple multi-axis positioners. While microfluidic approaches using OC hold promise for broader use, multiplexed and high throughput systems remain overly complicated and cost-prohibitive.

Bio-mimetic Wetness Device and Method

In 2019, the Food and Agriculture Organization of the United Nations estimated that between 20 to 40 percent of global crop production are lost to plant diseases and pests annually, with plant diseases costing the global economy roughly $220B each year. Disease-warning systems are currently being used by growers to preemptively mitigate destructive events using chemical treatment or biological management. Meteorological factors including rainfall, humidity, and air temperature are all considered in these systems, but the measurement of leaf wetness duration (LWD) is important to its governing role in infection processes for many fungal pathogens. The longer a leaf stays wet, the higher the risk that disease will develop, because many plant pathogen propagules require several hours of continuous moisture to germinate and initiate infection The current gold standard to measuring LWD is using the capacitive leaf wetness sensor (LWS). The LWS functions by measuring a change in the capacitance seen at its surface which then yields an output signal that changes according to its surface wetness. Commercial leaf wetness sensors estimate the amount of surface water and leaf wetness duration by measuring the change in capacitance of a surface that accumulates condensed water. However, the one-size-fits-all commercial sensors do not accurately reflect the variation in leaf traits (particular shape, texture, and hydrophobicity) these traits strongly affect surface wettability (hydrophilicity) and vary widely among plant species.

Sequential Pass Express Charge Detection Mass Analyzer

Charge detection mass spectrometry (CDMS) effectively bridges the gap in mass measurement technologies and is well suited to the analysis of aerosol-borne viruses and even bacteria such as tuberculosis. CDMS can provide mass measuring accuracies for ions with masses above 500 kDa that are comparable to more expensive conventional instruments and, most importantly, this technology can be applied to ions that are too large (10+ MDa) or heterogeneous to measure using conventional MS. Single pass CDMS instruments have been used to measure masses of large polymers, nanodroplets, dust, and bacterial spores. Mass measurements of MDa-sized PEG molecules and polystyrene nanoparticles (50–110 nm diameter) using an array of 4 detection tubes positioned between the trapping electrodes of an electrostatic ion trap (EIT) have been previously reported. However, no commercial CDMS instrumentation yet exists that can measure masses in the range of 10’s to 1000’s of MDa. UC Berkeley researchers have developed a charge detection mass analyzer which is designed to enable mass measurements of individual ions at rates greater than 10,000 ions per second, ~1000x faster than current state-of-the-art charge detection mass spectrometry instrumentation and other methods that measure molecules >1 MDa in size. 

Apodization Specific Peak Fitting In Charge Detection Mass Spectrometry

Short-time Fourier transforms with short segment lengths are typically used to analyze single ion charge detection mass spectrometry (CDMS) data either to overcome effects of frequency shifts that may occur during the trapping period or to more precisely determine the time at which an ion changes mass, charge or enters an unstable orbit. The short segment lengths can lead to scalloping loss unless a large number of zero-fills are used, making computational time a significant factor in real time analysis of data.    To address the foregoing deficiencies in prior approaches, UC Berkeley researchers have developed an apodization specific fitting that can lead to a 9-fold reduction in computation time compared to zero-filling to a similar extent of accuracy. This makes possible real-time data analysis using a standard desktop computer and capable of separating ions with similar frequencies.  

Deep Junction Low Gain Avalanche Detector

The development of Low-Gain Avalanche Detectors (LGADs) that make controlled use of impact ionization has led to an advancement in the use of silicon diode detectors in particle detection, particularly in the arena of ultrafast (~10 ps) timing. For what are today considered to be “conventional” LGADs, the high fields needed to induce the impact ionization process lead to breakdown between the separated n-p junctions that are used to simultaneously deplete the sensors and establish the readout segmentation. As a result, working devices have included a Junction Termination Extension (JTE) that provide electrostatic isolation between neighboring implants, but at a cost of introducing a dead region between the sensor segments that is insensitive to the deposited charge from an incident particle. The width of this dead region is 50 µm or more, making conventional LGAD sensors inefficient for granularity scales much below 1mm. On the other hand, demands from the particle physics (4D tracking) and photon science (high frame-rate X-Ray imaging) communities call for granularity at the 50 µm scale. Thus, there is great interest in overcoming the current granularity limits of LGAD sensors. There are several ideas, under various levels of development, that have been proposed to circumvent the JTE limitAC-coupled (“AC-LGAD”) LGADs eliminate the need for the JTE by making use of a completely planar (non-segmented) junction structure, and then establish the granularity entirely through the electrode structure, which is AC-coupled to the planar device through a thin layer of insulator. Since charge is not collected directly by the electrodes, there is a point-spread function that relates the signal location to the pad (electrode) response that is a property of the effective AC network formed by the highly doped gain layer just below the insulating layer and the electrode structure. Prototype devices exhibit good response and timing characteristics.Inverse (“ILGAD”) LGADs also eliminate the need for the JTE by making use of a planar junction structure. In this case, the electrode structure is placed on the side of the device opposite the junction. Prototypes with appealing signal characteristics have yet to be produced. In addition, the manufacture of these devices requires processing on both sides of the sensor, which is significantly more difficult than the single-sided processes used for conventional and AC LGADs.Trench-isolated (“TI-LGAD”) LGADs attempt to replace the JTE with a physical trench etched around the edge of the detector segment, which is then filled with insulator. This approach is very new, and its proponents hope to be able to use it to reduce the dead area between segments to as little as 5 µm. First prototypes are just recently available and are under study. Much work remains to be done to show that this approach will produce a stable sensor, and to see how small the dead region can be made.

Neuro-Swarm3: System-On-A-Nanoparticle For Wireless Recording Of Brain Activity

A fundamental limitation for the implantable brain-machine interfaces (BMI) is the wiring requirements for power transfer and signal transmission. Microelectrode arrays (MEAs), the workhorse technology in neuroscience, offer multiplexed electrophysiological recordings with high temporal resolution. However, their use is inherently limited to a few hundred electrodes as direct electronic measurements suffer from complex wiring requirements and inherent bandwidth (spatial multiplexing) limitations due to electron-electron interactions within conductors. Moreover, electrode arrays can only record from small sections of the brain and require invasive cranial surgical operations. The recent discovery of genetically encoded voltage sensitive fluorescence indicators (GEVI) has created tremendous excitement as light offers unparalleled multiplexing and information carrying capabilities. However, GEVI cannot be used in humans as it requires expression of voltage sensitive molecules by neurons and therefore genetic manipulation. In addition, attenuation of visible light in biological tissue renders much of the brain inaccessable to fluorescence based techniques.  

METHOD AND SYSTEM FOR THE NON-INVASIVE RECORDING OF MARINE MAMMAL SLEEP IN THE WILD

Understanding of biophysical processes in marine mammals, like elephant seals, is limited by our ability to monitor wild behavior. Elephant seals spend the majority of their life at sea, reaching depths of over 1500 m that challenge even the most recent advances in biometric monitoring devices. Many existing devices for monitoring electrophysical signals in seals are also invasive and require skin or skull perforation for electrode implantation. A UC Santa Cruz researcher has designed a water-resistant, non-invasive device that can withstand pressures of 3000 psi and is capable of monitoring over twenty electrophysiological signals in wild elephant seals.

Magnetometer Based On Spin Wave Interferometer

Brief description not available

Templated Synthesis Of Metal Nanorods

Brief description not available

Magneto-Optic Modulator

Brief description not available

(SD2021-377) Pressure-stabilized dual inlet gas mass spectrometry

Mass spectrometers for high precision gas isotope measurements (e.g., noble gases, carbon, nitrogen) are typically equipped with a dual inlet system in which one side contains the unknown sample gas and the second side contains a known standard. Repeated comparisons of the two gases allows precise determination of differences in the gas composition. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Scalable High Intensity Ultrashort Pulse Compressor And Cleaner

This invention is a high intensity ultrashort pulse compressor that filters out low intensity artifacts and is made with commercially available low-cost components. This integrated system also provides scalability and can therefore be used for a range of laser intensities.

Electric Ratchet Based Ion Pumps

UCI researchers developed a new device that uses electricity to drive ion separation across a membrane. This device can increase the energy efficiency of various applications such as artificial photosynthesis, water desalination, and chemical separations.

Automated Tip Conditioning ML-Based Software For Scanning Tunneling Spectroscopy

Scanning tunneling microscopy (STM) techniques and associated spectroscopic (STS) methods, such as dI/dV point spectroscopy, have been widely used to measure electronic structures and local density of states of molecules and materials with unprecedented spatial and energy resolutions. However, the quality of dI/dV spectra highly depends on the shape of the probe tips, and atomically sharp tips with well-defined apex structures are required for obtaining reliable spectra. In most cases, STS measurements are performed in ultra-high vacuum  and low temperature (4 K) to minimize disturbances. Advance tip preparation and constant in situ tip conditioning are required before and during the characterization of target molecules and materials. A common way to prepare STM tips is to repetitively poke them on known and bare substrates (i.e. coinage metals or silicon) to remove contaminations and to potentially coat the tip with substrate atoms. The standard dI/dV spectra of the substrate is then used as a reference to determine whether the tip is available for further experiments. However, tip geometry changes during the poking process are unpredictable, and consequently tip conditioning is typically slow and needs to be constantly monitored. Therefore, it restricts the speed of high-quality STM spectroscopic studies. In order to make efficient use of instrument idle time and minimize the research time wasted on tip conditioning, UC Berkeley researchers developed software based on Python and machine learning that can automate the time-consuming tip conditioning processes. The program is designed to do tip conditioning on Au(111) surfaces that are clean or with low molecular coverage with little human intervention. By just one click, the program is capable of continued poking until the tip can generate near-publication quality spectroscopic data on gold surfaces. It can control the operation of a Scienta Omicron STM and automatically analyze the collected topographic images to find bare Au areas that are large enough for tip conditioning. It will then collect dI/dV spectra at selected positions and use machine learning models to determine their quality compared to standard dI/dV spectra for Au20 and determine if the tip is good enough for further STS measurements. If the tip condition is not ideal, the program will control the STM to poke at the identified positions until the machine learning model predicts the tip to be in good condition.

  • Go to Page: