Browse Category: Sensors & Instrumentation > Scientific/Research

[Search within category]

Photonic Lantern Spectrometer

Multimode optical fiber was first introduced in astrophotonics applications as “light pipes” to transport light from telescopes to instruments. The integration of multimode optical fiber helped to maximize light collection but offered little control over the propagation modes from the collected light, which affects the quality and speed of light transmission. Single-mode optical fiber used in interferometry proved invaluable for spatial filtering and wavefront correction, providing a stable, reliable, and flexible way to guide light in precision sensing and imaging. Photonic lanterns were conceived in the early 2000s to help bridge a gap between the light-gathering efficiency of multimode optical fiber and the precision of single-mode optical fiber. Photonic lantern devices have reasonably addressed the efficient conversion needs between multimode/ multi-modal and multiple single-mode light paths. However, challenges remain with respect to improving and scaling of photonic lantern devices, including coupling efficiency/losses, bandwidth limitations, and high-order mode (>20) capabilities.

Automated Soil Pore Water Sampling and Nitrate Detection System

Researchers at the University of California, Davis have developed a sophisticated soil nitrate sensing system designed to accurately measure soil pore water nitrate concentrations, enhancing sustainable agriculture and environmental monitoring.

Method Of Microbubble Resonator Fabrication

An innovative technique for creating high-sensitivity Whispering Gallery Mode (WGM) sensors through advanced microbubble resonator fabrication.

In-Incubator, Servo-Controlled Microvalve System for Automated Culture Management

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter "organoid") have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Despite their potential, organoid experiments present several challenges. Organoids require a rigorous, months-long developmental process, demanding substantial resources and meticulous care to yield valuable data on aspects of biology such as neural unit electrophysiology, cytoarchitecture, and transcriptional regulation. Traditionally the data has been difficult to collect on a more frequent and consistent basis, which limits the breadth and depth of modern organoid biology. Generating and measuring organoids depend on media manipulations, imaging, and electrophysiological measurements. Historically are labor- and skill-intensive processes which can increase risks associated with experimental validity, reliability, efficiency, and scalability.

Neuronal Cell Classification System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of brain development, providing an exceptional tool for studying the complexities of biology. Among these, cortical organoids, comprising in part of neurons, have been instrumental in providing early insights into brain formation, function, and pathology. Functional characteristics of cortical organoids, such as cellular morphology and electrophysiology, provide physiological insight into cellular states and are crucial for understanding the roles of cell types within their specific niches. And while progress has been made studying engineered neuronal systems, decoding the functional properties of neuronal networks and their role in producing behaviors depends in part on recognizing neuronal cell types, their general locations within the brain, and how they connect.

Organoid Training System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter "organoid") have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Modern methods of interfacing with organoids involve any combination of encoding information, decoding information, or perturbing the underlying dynamics through various timescales of plasticity. Our knowledge of biological learning rules has not yet translated to reliable methods for consistently training neural tissue in goal-directed ways. In vivo training methods commonly exploit principles of reinforcement learning and Hebbian learning to modify biological networks. However, in vitro training has not seen comparable success, and often cannot utilize the underlying, multi-regional circuits enabling dopaminergic learning. Successfully harnessing in vitro learning methods and systems could uniquely reveal fundamental mesoscale processing and learning principles. This may have profound implications, from developing targeted stimulation protocols for therapeutic interventions to creating energy-efficient bio-electronic systems.

Microfluidic Platform for Sorting Plant Cells

A novel dielectrophoresis (DEP)-based microfluidics method for efficient and label-free sorting of plant cells, leveraging unique dielectric properties.

Modern Organoid Research Platform System and Methods

Advances in biological research have been greatly influenced by the development of organoids, a specialized form of 3D cell culture. Created from pluripotent stem cells, organoids are effective in vitro models in replicating the structure and progression of organ development, providing an exceptional tool for studying the complexities of biology. Among these, cerebral cortex organoids (hereafter “organoid”) have become particularly instrumental in providing valuable insights into brain formation, function, and pathology. Despite their potential, organoid experiments present several challenges. Organoids require a rigorous, months-long developmental process, demanding substantial resources and meticulous care to yield valuable data on aspects of biology such as neural unit electrophysiology, cytoarchitecture, and transcriptional regulation. Traditionally the data has been difficult to collect on a more frequent and consistent basis, which limits the breadth and depth of modern organoid biology. Generating and measuring organoids depend on media manipulations, imaging, and electrophysiological measurements. Historically these are labor- and skill-intensive processes which can increase risks associated with known human error and contamination.

Auto Single Respiratory Gate by Deep Data Driven Gating for PET

In PET imaging, patient motion, such as respiratory and cardiac motion, are a major source of blurring and motion artifacts. Researchers at the University of California, Davis have developed a technology designed to enhance PET imaging resolution without the need for external devices by effectively mitigating these artifacts

Nonlinear Microwave Impedance Microscopy

      Microwave impedance microscopy (MIM) is an emerging scanning probe technique that enables non-contact, nanoscale measurement of local complex permittivity. By integrating an ultrasensitive, phase-resolved microwave sensor with a near-field probe, MIM has made significant contributions to diverse fundamental and applied fields. These include strongly correlated and topological materials, two-dimensional and biological systems, as well as semiconductor, acoustic, and MEMS devices. Concurrently, notable progress has been made in refining the MIM technique itself and broadening its capabilities. However, existing literature has focused exclusively on linear MIM based on homodyne architectures, where reflected or transmitted microwave is demodulated and detected at the incident frequency. As such, linear MIM lacks the ability to probe local electrical nonlinearity, which is widely present, for example, in dielectrics, semiconductors, and superconductors. Elucidating such nonlinearity with nanoscale spatial resolution would provide critical insights into semiconductor processing and diagnostics as well as fundamental phenomena like local symmetry breaking and phase separation.       To address this shortcoming, UC Berkeley researchers have introduced a novel methodology and apparatus for performing multi-harmonic MIM to locally probe electrical nonlinearities at the nanoscale. The technique achieves unprecedented spatial and spectral resolution in characterizing complex materials. It encompasses both hardware configurations enabling multi-harmonic data acquisition and the theoretical and calibration protocols to transform raw signals into accurate measures of intrinsic nonlinear permittivity and conductivity. The advance extends existing linear MIM into the nonlinear domain, providing a powerful, versatile, and minimally invasive tool for semiconductor diagnostics, materials research, and device development.

Bent Crystal Spectrometer For Pebble Bed Reactor Burnup Measurement

      Pebble bed reactors (PBRs) are an emerging advanced nuclear reactor design where fuel pebbles constantly circulate through the core, as opposed to housing static fuel assemblies, generating numerous advantages including the ability for online refueling versus expensive shutdowns. Online refueling is overall beneficial but poses an operation challenge in that the pebbles must be measured and analyzed for burnup characteristics very quickly (in under 40 seconds), without much time to cool down, challenging the high Purity Germanium (HPGe) detectors historically used for burnup measurements. HPGe detectors can normally only be operated up to tens of thousands of counts per second, far below radiation rates from freshly discharged fuel, and are therefore operated at large distances from sources, with significant shielding. Only a small fraction of detected counts comes from burnup markers, yielding high uncertainty, or can be completely masked by effects of Compton scattering within the detectors.      To overcome the challenges of using HGPe detectors to measure burnup in continuously fueled reactors, UC Berkeley researchers have developed a novel technology capable of measuring gamma rays within a fine energy ranges and without the interference of Compton scattering. The device is also significantly cheaper than HPGe detectors and offers a reduced detector footprint. Nuclides including but not limited to Np-239, Eu-156, and Zr-95 can be measured and analyzed for burnup, path information through the core, and fast and thermal fluence. Furthermore, precise measurement of the Np-239 content provides better data for reactor safeguard purposes. The technology offers meaningful improvements in measurement accuracy, footprint, and cost, for PBRs and other continuously fueled reactors, such as molten salt reactors (MSRs).

CoDesign.X: Evaluating Pediatric Room Design using VR and Biosensors

      Poorly designed healthcare environments can increase patient stress and delay recovery, particularly in pediatric settings (see, e.g., Devlin & Andrade 2017; Park et al. 2018; Jafarifiroozabadi et al. 2023). Traditional methods for gathering architectural design feedback, such as interviews, surveys, and focus groups, rely heavily on subjective user input, and often fail to capture the voices of children by relying on parent proxies. Physical mock-ups, a common alternative to traditional methods, provide a full-scale model of a room or space, often constructed from materials like cardboard or foam. While these mock-ups allow for some degree of spatial exploration, they are time-intensive, and limited in their ability to replicate real-world conditions; high-fidelity mock-ups which incorporate more realistic materials and finishes add expense and limit flexibility for testing multiple design iterations.       To overcome these challenges UC Berkeley researchers have developed an innovative participatory design methodology that leverages advanced virtual reality (VR), eye-tracking, and physiological/emotional biofeedback technologies to evaluate the design of pediatric healthcare environments. This comprehensive system is further enhanced by custom-developed workflows for creating dynamic, interactive room simulations that are randomized to ensure rigorous, unbiased data collection. The methodology is uniquely capable of gathering objective, quantifiable data on how pediatric patients and their families respond physiologically and emotionally to specific environmental design features.

High Performance Charge Detection Mass Spectrometry Without Ultra-High Vacuum

Charge detection mass spectrometry (CDMS) measurements of individual ions using either Orbitrap or electrostatic ion trap-based instruments have heretofore been performed under ultra-high vacuum conditions (10-9 Torr or lower). The rationale for this expensive and often cumbersome requirement is that these measurements need to be performed in an environment where collisions with background gas do not adversely affect the measurements.  UC Berkeley researchers have developed systems and methods  that enable accurate CDMS mass measurements at pressures that are as high as 1 × 10−4 Torr, multiple orders of magnitude higher than previously demonstrated. Consistent, accurate masses were obtained for pentameric antibody complexes (~800 kDa), adeno-associated viruses (~4.8 MDa), and both ~50 and ~100 nm diameter polystyrene nanoparticles (~35 MDa and ~330 MDa, respectively) at pressures ranging from 1 × 10−8 Torr to 1 × 10−6 Torr. 

Photothermal Patterning Flow Cell

Researchers at the University of California, Davis have developed a photothermal patterning flow cell that enables precise and efficient patterning of polymer films, compatible with existing cleanroom photolithography equipment.

Handheld Device For Quick DNA Extraction

Professor Hideaki Tsutsui and colleagues from the University of California, Riverside have developed a portable handheld device for nucleic acid extraction. With its high-speed motor, knurled lysis chamber for rapid sample lysis, and quick nucleic acid extraction using paper disks, this device can yield ready-to-use extracts in just 12 minutes, significantly reducing the time required for sample preparation. This technology is advantageous over current methods as it can be expedited without the need for cumbersome specimen collection, packaging, and submission, shortening the turnaround time.  

3D Photonic and Electronic Neuromorphic Artificial Intelligence

Researchers at the University of California, Davis have developed an artificial intelligence machine that uses a combination of electronic neuromorphic circuits and photonic neuromorphic circuits.

Tensorized Optical Neural Network Architecture

Researchers at the University of California, Davis have developed a large-scale, energy-efficient, high-throughput, and compact tensorized optical neural network (TONN) exploiting the tensor-train decomposition architecture on an integrated III–V-on-silicon metal–oxide–semiconductor capacitor (MOSCAP) platform.

Metasurface, Metalens, and Metalens Array with Controllable Angular Field-of-View

Researchers at the University of California, Davis have developed an optical lens module that uses a metalens or a metalens array having a controllable angular field-of-view.

Hyperspectral Compressive Imaging

Researchers at the University of California, Davis have developed two designs capable of capturing hyperspectral images that can be processed using compressive sensing techniques. These advanced component technologies for hyper-spectral imagers realizing 100x reduced size, weight, and power while supporting 1000x framerates in support of high performance.

Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy

      Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control.       UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.

One-step Packaged Multi-mode CMOS Bio-analyzer for Point-of-Care

      Current clinical practice for detecting low-concentration molecular biomarkers requires sending samples to centralized labs, leading to high costs and delays. Successful point-of-care (POC) diagnostic technology exist, such as the paper-based lateral-flow assay (LFA) used for pregnancy tests and SARS-CoV-2 rapid antigen tests, or miniaturized instruments such as the Abbot i-Stat Alinity. However, the former provides binary results or limited quantitative accuracy, and the latter is too expensive for in-home deployment. A promising approach for POC diagnostics, offering tailored circuit optimization, multiplexed detection, and significant cost and size reductions, is millimeter-sized CMOS integrated circuits coupled with microfluidics. Recent demonstrations include protein, DNA/RNA, and cell detection. The current complexity of system packaging (e.g., wire/flip-chip bonding) makes integrating microfluidics with more sophisticated functions challenging, and often-required syringe pumps and tubing are operationally unfriendly, limiting current approaches.       UC Berkeley researchers have developed a fully integrated, multi-mode POC device that requires single-step assembly and operates autonomously. Drawing inspiration from RFID technology and implantables, they have introduced inductively-coupled wireless powering and communication functionality into a CMOS bio-analyzer. With the chip being fully wireless, the die can be easily integrated into a substrate carrier, achieving a completely flat surface that allows for seamless bonding with the microfluidic module. In the final product, the device will be sealed in a pouch inside a vacuum desiccator. The user tears the pouch, adds a drop of sample, and the system automatically begins operation. The operation window can last up to 40 minutes, making the process insensitive to time delays. The present CMOS bio-analyzer integrates pH-sensing and amperometric readout circuits for both proton-based and redox-based immunoassays.

Subtractive Microfluidics in CMOS

      Integrating microelectronics with microfluidics, especially those implemented in silicon-based CMOS technology, has driven the next generation of in vitro diagnostics. CMOS/microfluidics platforms offer (1) close interfaces between electronics and biological samples, and (2) tight integration of readout circuits with multi-channel microfluidics, both of which are crucial factors in achieving enhanced sensitivity and detection throughput. Conventionally bulky benchtop instruments are now being transformed into millimeter-sized form factors at low cost, making the deployment for Point-of-Care (PoC) applications feasible. However, conventional CMOS/microfluidics integration suffers from significant misalignment between the microfluidics and the sensing transducers on the chip, especially when the transducer sizes are reduced or the microfluidic channel width shrinks, due to limitations of current fabrication methods.       UC Berkeley researchers have developed a novel methodology for fabricating microfluidics platforms closely embedded within a silicon chip implemented in CMOS technology. The process utilizes a one-step approach to create fluidic channels directly within the CMOS technology and avoids the previously cited misalignment. Three types of structures are presented in a TSMC 180-nm CMOS chip: (1) passive microfluidics in the form of a micro-mixer and a 1:64 splitter, (2) fluidic channels with embedded ion-sensitive field-effect transistors (ISFETs) and Hall sensors, and (3) integrated on-chip impedance-sensing readout circuits including voltage drivers and a fully differential transimpedance amplifier (TIA). Sensors and transistors are functional pre- and post-etching with minimal changes in performance. Tight integration of fluidics and electronics is achieved, paving the way for future small-size, high-throughput lab-on-chip (LOC) devices.

  • Go to Page: