Browse Category: Optics and Photonics > All Optics and Photonics

[Search within category]

(SD2023-232) Multi-Dimensional Widefield Infrared-encoding Spontaneous Emission Microscopy

Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. Researchers from UC San Diego developed a new method using a pair of femtosecond mid-infrared and visible excitation pulses to distinguish chromophores, including molecules and quantum dots, that possess nearly identical emission spectra using multiplexed conditions in a three-dimensional space. 

Hybrid Guided-Wave And Free-Space System For Broadband Integrated Light Delivery

Photonic integrated circuits (PICs) have emerged as an encouraging platform for many fields due to their compact size, phase stability, and can be mass produced in semiconductor foundries at low cost. As such, PIC enabled waveguide-to-free-space beam delivery has been demonstrated towards ion trap quantum computing, atomic clocks, optical tweezers, and more. Grating couplers are commonly used, as through careful design, they can generate diffraction-limited focused spots into free space from a waveguide input. However, they suffer from many drawbacks – they have a narrow optical bandwidth, limited efficiency, are sensitive to light polarization and the emission angle is sensitive to fabrication variation.Quantum systems require stable delivery of multiple wavelengths, often spanning the near ultraviolet (NUV), visible, and near infrared (NIR) spectrum, to multiple locations tens to hundreds of micrometers above the PIC. This requirement exacerbates the pitfalls of grating couplers; their single-wavelength operation necessitates multiple gratings per unit cell. With more gratings to fabricate, fabrication variance takes a greater toll on device performance. UC Berkeley researchers have devised a new approach and device to deliver light from in-plane waveguides to out-of-plane free space beams in a low-loss, broadband manner. In particular, this device is used for controlling qubits in a trapped ion quantum computer, but in general the system is suitable for other integrated beam delivery applications.

(SD2022-320) Method to improve the sampling rate for photoacoustic imaging

High-frequency photoacoustic tomography (> 20 MHz) is becoming increasingly important in biomedical applications. However, it requires data acquisition (DAQ) to have commensurately high sampling rate, which imposes challenges to hardwires and increases the cost of building a PA imaging system. For example, the sampling rate should be higher than 80 MHz to cover 100% bandwidth of a 26-MHz transducer (Nuquist limit). A commercial PA imaging system such as Vevo LAZR X (Fujifilm VISUALSONICS Inc. ON, Canada) with 80-MHz sampling rate can cost more than 990,000$ in the United States.Many PA groups use clinical ultrasound DAQs, which are low cost but also have a low sampling rate, e.g., the iu22 system’s sampling rate is 32 MHz.

A Discrete Color Approach for Stress Mitigation in Medical and Related Healthcare Applications as Applied to the Lighting Of Interiors and/or Medical Apparatus

The California Lighting Technology Center at UC Davis in collaboration with the Center for Mind and Brain have developed a novel lighting technology approach for stress recovery and stress mitigation.

Co-Wiring Method For Primitive Spatial Modulation

Dynamic patterning of light is used in a variety of applications in imaging and projection. This is often done by spatial light modulation, in which a coherent beam of input light is modified at the pixel level to create arbitrary output patterns via later interference. Traditional approaches to spatial light modulation suffer from a high operating burden, especially as the number of pixels increases, and incomplete coverage of the optical surface. This results in high device complexity, and cost, as well as enormous real-time computation requirements, reduced optical performance, and optical artifacts.To address these problems, researchers at UC Berkeley have developed a method for wiring groups of pixels, such as annular rings, parallel strips, or radial strips. This takes advantage of the fact that most spatial light modulation tasks can be accomplished by combining a number of simple “primitive phase profiles”, in which not all pixels need be independent of each other. In this co-wiring method, individual optical elements remain at the pixel level, but are wired together in a way that they move in precisely the coordinated manner to produce one of these primitive phase profiles. This allows for high frame rates, high coverage of the optical plane, and a degree of sensitivity impossible to produce with large, geometric optical elements that exist in prior art.

Pixel And Array Architecture For Spatial Light Modulation

Dynamic patterning of light is used in a variety of applications in imaging and projection. This is often done by spatial light modulation, in which a coherent beam of input light is modified at the pixel level to create arbitrary output patterns via later interference. Traditional approaches to spatial light modulation suffer from a fundamental restriction on frame rate which has led manufacturers to seek the diminishing returns of continually increasing pixel number, resulting in impractical device sizes, complexity, and cost, as well as enormous real-time computation requirements. Additionally, these devices inherently produce monochromatic and speckled frames due to the requirement that the input beam be coherent.To address these problems, researchers at UC Berkeley have developed a device which can perform spatial light modulation with a frame rate ~20 times higher than existing technologies. This allows for a smaller number of pixels to produce high resolution, full color images by interleaving images of different colors and scanning rapidly across a screen in a similar way to the operation of CRT televisions Researchers have also developed an efficient and robust fabrication method, which combined with the smaller pixel number of these devices could cause them to be much more cost effective than existing technologies.

Integrated Microlens Coupler For Photonic Integrated Circuits

Silicon photonics is increasingly used in an array of communications and computing applications. In many applications, photonic chips must be coupled to optical fibers, which remains challenging due to the size mismatch between the on-chip photonics and the fiber itself. Existing approaches suffer from low alignment tolerance, sensitivity to fabrication variations, and complex processing, all of which hinder mass manufacture.To address these problems, researchers at UC Berkeley have developed a coupling mechanism between a silicon integrated photonic circuit and an optical fiber which uses a microlens to direct and collimate light into the fiber. Researchers have demonstrated that this device can achieve low coupling loss at large alignment tolerances, with an efficient and scalable manufacturing process analogous to existing manufacture of electronic integrated circuits. In particular, because the beam is directed above the silicon chip, this method obviates dry etching or polishing of the edge of the IC and allows the silicon photonics to be produced by dicing in much the same way as present electronic integrated circuits.

Hot Forming of Curved Mirrors Without the Need for a Mandrel

Large format active or deformable mirrors can enable optical applications that are difficult to achieve with more conventional-sized deformable mirrors. In particular, adaptive secondary mirrors (ASMs) can be integrated into telescopes and provide adaptive optics corrections. However, making facesheets for ASMs is challenging. Current facesheet fabrication processes are costly and risky. Hot forming approaches for forming curved facesheets have been developed, but these methods typically require a mold for the facesheet to slump into.

Spectral Fluctuation Raman Spectroscopy (SFRS)

The function of living tissue relies not only on its structure, but crucially on its dynamics at an array of timescales. Structural imaging of biological molecules at very high resolution has become routine in recent years, but these static snapshots provide little insight into the structural changes crucial for biological function. It is well known that changes in the geometry of macromolecules induce fluctuations in the Raman spectrum, but measurements of these fluctuations inherently suffer from poor signal strengths, meaning that dynamics at many timescales are obscured by the time-averaging necessary to obtain sufficient sensitivity.To address these problems, researchers at UC Berkeley have developed a method for probing the Raman spectrum, and hence dynamics of biological molecules at very high sensitivity and across timescales inaccessible to extant techniques. This technique, in fact, can in principle obtain arbitrarily fine spectral and temporal resolution, opening the door to, for example, probe everything from the dynamics of side chain rotations (picoseconds) to protein folding and domain motion (milliseconds).

Functionalized Sila-Adamantane

Brief description not available

Hollow Core Optical Waveguiding Enabled By Zero-Index Materials

Researchers at UC Irvine have developed a novel optical fiber technology that uses newly developed “zero-refractive index” material as a guiding medium, overcoming the significant limitations of conventional optical fiber where light properties are limited by glass core material. This novel technology will dramatically improve optical communication transmission speed and power by orders of magnitude.

Deep Junction Low Gain Avalanche Detector

The development of Low-Gain Avalanche Detectors (LGADs) that make controlled use of impact ionization has led to an advancement in the use of silicon diode detectors in particle detection, particularly in the arena of ultrafast (~10 ps) timing. For what are today considered to be “conventional” LGADs, the high fields needed to induce the impact ionization process lead to breakdown between the separated n-p junctions that are used to simultaneously deplete the sensors and establish the readout segmentation. As a result, working devices have included a Junction Termination Extension (JTE) that provide electrostatic isolation between neighboring implants, but at a cost of introducing a dead region between the sensor segments that is insensitive to the deposited charge from an incident particle. The width of this dead region is 50 µm or more, making conventional LGAD sensors inefficient for granularity scales much below 1mm. On the other hand, demands from the particle physics (4D tracking) and photon science (high frame-rate X-Ray imaging) communities call for granularity at the 50 µm scale. Thus, there is great interest in overcoming the current granularity limits of LGAD sensors. There are several ideas, under various levels of development, that have been proposed to circumvent the JTE limitAC-coupled (“AC-LGAD”) LGADs eliminate the need for the JTE by making use of a completely planar (non-segmented) junction structure, and then establish the granularity entirely through the electrode structure, which is AC-coupled to the planar device through a thin layer of insulator. Since charge is not collected directly by the electrodes, there is a point-spread function that relates the signal location to the pad (electrode) response that is a property of the effective AC network formed by the highly doped gain layer just below the insulating layer and the electrode structure. Prototype devices exhibit good response and timing characteristics.Inverse (“ILGAD”) LGADs also eliminate the need for the JTE by making use of a planar junction structure. In this case, the electrode structure is placed on the side of the device opposite the junction. Prototypes with appealing signal characteristics have yet to be produced. In addition, the manufacture of these devices requires processing on both sides of the sensor, which is significantly more difficult than the single-sided processes used for conventional and AC LGADs.Trench-isolated (“TI-LGAD”) LGADs attempt to replace the JTE with a physical trench etched around the edge of the detector segment, which is then filled with insulator. This approach is very new, and its proponents hope to be able to use it to reduce the dead area between segments to as little as 5 µm. First prototypes are just recently available and are under study. Much work remains to be done to show that this approach will produce a stable sensor, and to see how small the dead region can be made.

Power Transistor Light Emission For Gate Control And Reliability Monitoring

Methods for monitoring device operating conditions and current are shifting towards the use of optical measurements, which are are less susceptible to electromagnetic noise. Existing light emission techniques utilize complex components, like laser diodes and photodiodes, to measure device current, rendering such techniques expensive to implement.

Variable Exposure Portable Perfusion Monitor

Brief description not available

Magnetochromatic Spheres

Brief description not available

Chromium Complexes Of Graphene

Brief description not available

Systems and Methods for Scaling Electromagnetic Apertures, Single Mode Lasers, and Open Wave Systems

The inventors have developed a scalable laser aperture that emits light perpendicular to the surface. The aperture can, in principal, scale to arbitrarily large sizes, offering a universal architecture for systems in need of small, intermediate, or high power. The technology is based on photonic crystal apertures, nanostructured apertures that exhibit a quasi-linear dispersion at the center of the Brillouin zone together with a mode-dependent loss controlled by the cavity boundaries, modes, and crystal truncation. Open Dirac cavities protect the fundamental mode and couple higher order modes to lossy bands of the photonic structure. The technology was developed with an open-Dirac electromagnetic aperture, known as a Berkeley Surface Emitting Laser (BKSEL).  The inventors demonstrate a subtle cavity-mode-dependent scaling of losses. For cavities with a quadratic dispersion, detuned from the Dirac singularity, the complex frequencies converge towards each other based on cavity size. While the convergence of the real parts of cavity modes towards each other is delayed, going quickly to zero, the normalized complex free-spectral range converge towards a constant solely governed by the loss rate of Bloch bands. The inventors show that this unique scaling of the complex frequency of cavity modes in open-Dirac electromagnetic apertures guarantees single-mode operation of large cavities. The technology demonstrates scaled up single-mode lasing, and confirmed from far-field measurements. By eliminating limits on electromagnetic aperture size, the technology will enable groundbreaking applications for devices of all sizes, operating at any power level. BACKGROUND Single aperture cavities are bounded by higher order transverse modes, fundamentally limiting the power emitted by single-mode lasers, as well as the brightness of quantum light sources. Electromagnetic apertures support cavity modes that rapidly become arbitrarily close with the size of the aperture. The free-spectral range of existing electromagnetic apertures goes to zero when the size of the aperture increases. As a result, scale-invariant apertures or lasers has remained elusive until now.  Surface-emitting lasers have advantages in scalability over commercially widespread vertical-cavity surface-emitting lasers (VCSELs). When a photonic crystal is truncated to a finite cavity, the continuous bands break up into discrete cavity modes. These higher order modes compete with the fundamental lasing mode and the device becomes more susceptible to multimode lasing response as the cavity size increases. 

  • Go to Page: