Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Disease: Central Nervous System

Categories

[Search within category]

Treatment Of Lysosomal Storage Disorders

UCLA researchers in the Departments of Neurology have developed a novel treatment for Lysosomal-storage diseases (LSDs) with neurological impairment.

New Drug Class for Treating Multiple Sclerosis

UCLA researchers from the Department of Molecular & Medical Pharmacology have developed a novel drug class for the treatment of multiple sclerosis.

Identification And Development Of Dual nSMase2-AChE Inhibitors For Neurodegenerative Disorders

UCLA researchers in the Department of Neurology, and the Department of Chemistry & Biochemistry have developed small molecule inhibitors of both the neutral sphingomyelinase 2 (nSMase2) and acetylcholinesterase (AChE) as novel therapeutics for neurodegenerative disorders caused by protein aggregation.

Easy to Wear Dry EEG Sensors for Human–Computer Interactions

Measurements based on electroencephalogram (EEG) are made by placing electrodes over a human scalp to apply and receive electrical signals. Various implementations of EEG sensors are available. The electroencephalogram (EEG) has recently gained popularity for use in various non-clinical studies but still lacks any robust, single application outside well-controlled laboratory environments. As the limitations of EEG are mostly due to the low spatial resolution, using multiple bio-sensing modalities proves to be better performing than EEG alone

Carborane-Based Histone Deacetylase (HDAC) Inhibitors

UCLA researchers from the Department of Chemistry & Biochemistry have developed a new class of Histone Deacetylase (HDAC) inhibitors that can be tuned for isoform specificity and other properties.

New Molecular Tweezers Against Neurological Disorders And Viral Infections

UCLA researchers in the Department of Neurology with an international team of scientists have developed several new molecular tweezer derivatives with novel synthesis methods that significantly improved the therapeutic efficacy and pharmacokinetic characteristics of the drug candidates.

Electrical Charge Balancing Scheme For Functional Stimulation Using Pulse Width Compensation

UCLA researchers in the Department of Bioengineering have developed a novel electrical charge cancellation scheme to effectively remove residual charge on an electrode, achieving greater precision for lesser hardware cost, while maintaining a surgically implantable small size without extra pulse insertion.

Methods Of Fabricating A Multi-Electrode Array For Spinal Cord Epidural Stimulation

UCLA researchers in the Department of Bioengineering and Department of Integrated Biology & Physiology have developed a novel array for spinal cord epidural stimulation.

Development of a Small Molecule that Blocks Alpha Synuclein Transmission in Neurodegenerative Disorders

There is a strong correlation with aging and the onset of developing a neurodegenerative disease such as Alzheimer’s or Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD) and Creutzfeldt-Jacob disease, Dementia with Lewy Bodies (DLB), Multiple system atrophy (MSA) and others. A universal commonality among these diseases is the presence of misfolded aggregated proteins in the brain or with cells of the brain. Very strong evidence supports a role of spreading of misfolded proteins from cell to cell and across the brain in disease progression. Moreover, these aggregated proteins can take different forms and be used help diagnosis the specific neurodegenerative disease. Parkinson’s disease (PD) is characterized by loss of striatal dopaminergic signaling and the presence of alpha-synuclein-containing Lewy bodies and neurites. Research has shown the importance of alpha-synuclein (α-Syn) from examining people with PD at autopsy and the pathology associated with the disease which contains misfolded and aggregated α-Syn. Moreover, a mutation in the gene encoding α-Syn (SNCA) or simple overexpression of wild-type α-Syn will lead to PD. The misfolding and spread of α-Syn are central to disease initiation and progression. The presence of misfoided α-Syn is also seen in other synucleinopathy diseases including Alzheimer’s disease (AD) and Dementia with Lewy Bodies (DLB), the two most prevalent progressive dementia diseases and MSA. One of the most common forms of symptomatic treatment for early stages of PD is the use of monoamine oxidase B inhibitors and in later stages the use of dopamine receptor agonists (DRAs) and /or levodopa. The treatment must find a good balance between clinical benefits and risks. Ultimately, these treatments fail to show improvement over the course of 2-5+ years, therefore, new alternative treatments are needed especially those attacking the underlying course of the disease. Small molecule binding to native states of globular proteins has been successfully to block misfolding and aggregation most notably in the case of targeting transthyretin to treat systemic amyloidosis. By contrast, targeting of intrinsically disordered proteins such as native monomeric α-synuclein (α-Syn) with  small molecules has been challenging due to their inherent structural heterogeneity and the absence of persistent structural elements.

Machine-Learning-Based Denoising Of Doppler Ultrasound Blood Flow And Intracranial Pressure Signal

UCLA researchers in the Department of Neurosurgery have developed a novel framework to constrain noises in the measurements of vital physiological signals from neurosurgical patients.

Glucose-conjugated magnetonanoparticles for visualization and treatment of neoplasms and neurological disorders by MRI

Researchers at the UCLA Semel Institute for Neuroscience and Human Behavior have developed magnetic nanoparticles (MNPs) functionalized with deoxyglucose that can be used as tissue-specific contrast agents for MRI. These novel MNPs can help physicians and researchers to differentiate neoplastic, epileptic, parkinsonian, or Alzheimer tissues from normal tissue based on the metabolic activity of the tissue.

Hydrogel For Endogenous Neuronal Progenitor Cells (NPC) Recruitment

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a novel hydrogel that aids in neuronal regeneration post stroke or disease.

Method And Substance For The Treatment Of Cerebral Amyloid Angiopathy

UCLA researchers in the Department of Pathology have identified a novel pathway that causes β-amyloid-associated smooth muscle cell loss in Cerebral Amyloid Angiopathy (CAA) cases.

Predicting the Placebo Response and Placebo Responders in Medicated and Unmedicated Patients Using Baseline Psychometric and Clinical Assessment Score

UCLA researchers have developed a method and model to predict the placebo effect and placebo responsiveness using the 30-item baseline positive and negative syndrome scales (PANSS) scores, within both the medicated and unmedicated Schizophrenia patients.

Techniques for Very-Low Power and High Dynamic-Range Delta-Sigma ADCs

Researchers in the UCLA Department of Electrical Engineering have developed an analog-to-digital converter (ADC), to be implemented as part of an implantable and closed-loop neural recording and stimulation system with a linear input range approximately ten times higher than that of existing devices.

Novel Tau Aggregation Inhibitor Peptide

UCLA researchers from the Department of Chemistry and Biochemistry have developed a novel approach to inhibit the aggregation of tau proteins in the brain, which is linked to over 20 dementias including Alzheimer’s Disease and Chronic Traumatic Encephalopathy.

Method to Direct the Reciprocal Interactions Between the Ureteric Bud and the Metanephric Mesenchyme

Researchers at UCLA have developed an approach to construct an embryonic kidney in vitro for the treatment of end stage renal disease.

Minimally Invasive Implantable Brain Stimulation Devices And Methods For Implanting Same

UCLA researchers in the Department of Neurosurgery have developed a novel, minimally invasive deep-brain stimulation device concept.

Inhibition of the Aggregation of Transthyretin by Specific Binding of Peptides to Aggregation-Driving Segments

UCLA researchers from the Department of Chemistry and Biochemistry have developed a novel process to inhibit amyloid aggregation of Transthyretin, which is associated with three debilitating disorders including senile systemic amyloidosis (SSA), Familial Amyloidotic Polyneuropathies (FAP), and Familial Amyloidotic Cardiomyopathies (FAC).

Surrogate Biomarkers For Amyloid And Neuroinflammation

UCLA researchers in the Department of Neurology and Medicine have developed a novel approach is to detect and measure neuroinflammation.

Allosteric BACE Inhibitors For Treatment Of Alzheimer’s Disease

UCLA researchers from the Department of Neurology have discovered a new class of drug candidates for Alzheimer’s disease. These small molecule compounds can specifically inhibit target enzymes to prevent target protein cleavage through an allosteric mechanism, preventing off-target side effect.

Inhibition Of Lipofuscin Aggregation By Molecular Tweezers

UCLA researchers in the Departments of Neurology and Molecular Therapy & Medical Genetics have developed a novel approach toward broad inhibition of lipofuscin aggregation.

Inhibition Of Stress Granule Formation Through Manipulation Of UBAP2L

Stress granule (SG) formation has been suggested as a two-step process, with initial formation of a dense stable SG ‘‘core’’ followed by accumulation of proteins containing intrinsically disordered regions (IDRs) and low-complexity domains (LCDs) into a peripheral ‘‘shell’’ through a process involving liquid-liquid phase separation (LLPS). Recently, SGs have been associated with human neurodegenerative disorders characterized by the presence of toxic insoluble protein aggregates. This link is most compelling in the case of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), where numerous disease-causing mutations are purported to interfere with LLPS-dependent growth and dynamics of SGs.

Integrative Leakage Correction For Contrast Agent Extravasation In Dynamic Susceptibility Contrast (DSC) - MRI

UCLA researchers in the Department of Radiological Sciences have developed a new technique for more accurately estimating relative cerebral blood volume (rCBV) from dynamic susceptibility contrast (DSC) perfusion MRI by improved modeling and correction of contrast agent leakage.

Intelligent Flexible Spinal Cord Stimulators For Pain And Trauma Management Through Neuromodulation

UCLA researchers in the Department of Neurosurgery and Electrical Engineering have developed a novel closed-loop spinal cord stimulator device that is small and flexible.

  • Go to Page: