Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Disease: Central Nervous System

Categories

[Search within category]

Peripheral Nerve Repair By Peptide Amphiphile Nanofibers.

UCLA researchers in the Department of Surgery have developed a novel method that promotes directed nerve growth and peripheral nerve regeneration using peptide amphiphile (PA) nanofibers. The combination of conduit and PA nanofiber scaffold offers greater success than currently used methods of bridging with empty conduits. This novel approach may become a substitute for nerve graft for clinical use in the treatment of peripheral nerve injuries.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

Non-Invasive Method For Determination Of Tissue Electrical Conductivity

UCLA researchers in the UCLA Semel Institutes of Neuroscience and Behavior have developed a non-invasive method to locate and estimate electrical currents in organs such as the brain and heart.

Fully Automated Localization Of EEG Electrodes

UCLA researchers have developed an algorithm for precisely locating EEG electrodes with respect to the patient’s brain.

Microbial Mediators Of The Beneficial Effects Of The Ketogenic Diet

UCLA researchers have identified a strategy to manipulate the gut microbiome to mimic the effects of a ketogenic diet, as a treatment for CNS disorders and metabolic diseases.

Retractable Step Cannula For Brain Delivery Of Therapeutics

An adjustable step cannula to minimize therapeutic agent leakage and maximize on-target drug delivery. This new cannula design improves brain drug delivery over current fixed-length step cannulas.

Novel Neuromodulation Devices for Chronic Pain, Sleep-Related Respiratory and Blood Pressure Disorders

Dr. Ron Harper, a Distinguished Professor of Neurobiology at UCLA, and colleagues have developed novel neuromodulation devices and methods for treating chronic migraine pain, obstructive sleep apnea, and other cardiovascular and respiratory disorders.

Methods For The Identification And Targeting Of Brain Regions And Structures

A UCLA physician has developed a method to identify regions of the brain using Diffusion Tensor Imaging MRI to locate afferent and efferent neural tracts that lead to and from the specific region of interest. This technique will improve the accuracy and safety of brain treatments, such as electrical brain stimulation and ultrasound imaging.

Increasing Brain Excitability For Recovery After Stroke

Researchers at UCLA have developed an effective treatment that promotes Central Nervous System (CNS) repair in damaged brains following stroke, trauma or neurodegenerative disease.This novel therapeutic approach has shown tremendous promise, and can significantly impact CNS injury treatment.

Apoe4-Targeted Theraputics That Increase Sirt1

UCLA researchers have identified Alaproclate (A03) as a promising drug candidate to treat Mild Cognition Impairment (MCI) and Alzheimer’s disease (AD) through inhibition of the ApoE4 neurotoxicity.

Combination Of Approved Alzheimer's Drugs With Metabolic Enhancement For Neurodegeneration (MEND) To Comprise A Therapeutic System

UCLA researchers in the Department of Neurology have developed a novel therapeutic program for Alzheimer’s disease, based on the combination of existing AD drugs and a program to enhance metabolic activity.

Microchambers With Solid-State Phosphorescent Sensor For Measuring Single Mitochondrial Respiration

The invention is a miniaturized device that assays the respiration of a single mitochondrion. Through a novel approach for measuring oxygen consumption rate, the device provides information on cell and tissue mitochondrial functional. This data is relevant for understanding human conditions associated with mitochondrial dysfunction, such as Alzheimer’s Disease and cancer.

A Novel Method to Generate Specific and Permanent Macromolecular Covalent Inhibitors

UCSF researchers have invented a novel method to generate covalent macromolecular inhibitors. This strategy allows a peptide inhibitor to bind to its target protein specifically and irreversibly through proximity-enabled bioreactivity.

Use of mutant Kv7.2 channels for anti-epileptic and pain therapies

During seizures or pain-induced inflammation, excess chemical mediators suppress potassium channels mediating neuronal activity and thereby inactivate new generation anti-epileptic drugs and painkillers acting on those channels. The invention describes a gene therapy using a genetically-engineered potassium channel that reduces adverse effects by silencing neuronal hyperactivity while maintaining normal neuronal activity in the presence of chemical mediators to treat epilepsy and pain.

An Antibody to Phospho T3 of Human Huntingtin

Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by abnormal function of mutated Huntingtin protein. The invention uncovers an antibody to a new post-translational modification site that affects human Huntingtin aggregation and pathogenesis of HD.

Structure-Based Peptide Inhibitors Of Alpha-Synuclein Aggregation, A Potential Therapeutic For Parkinson's Disease

UCLA researchers in the Department of Biological Chemistry have designed a novel peptide inhibitor that can be used as a therapeutic for Parkinson’s disease.

Hybridoma Producing Antibodies To C1qRp

Individuals with genetic immunodeficiency, as well as patients with HIV, cancer, and those undergoing chemotherapy or high risk surgery, are at increased risk for infection. C1q, an important component of the immune system, is known to enhance phagocytosis (cell ingestion of harmful bacteria or other materials). Scientists at UCI have developed antibodies to the receptor for C1q, C1qRp, to be used as a target for prophylactic treatments in populations at high risk of infection.

Wireless Implantable System To Restore Memory

UCLA researchers have developed a wireless implantable deep brain stimulation system to restore memory in individuals with traumatic brain injury.

Omnidirectional MRI Catheter Resonator for Interventional Procedures

This invention describes an orientation-independent device that can create bright and highly localized signal enhancement during magnetic resonance imaging.

Methods of Diagnosis and Treatment of Alzheimer’s Disease

Researchers at the University of California, Davis have discovered an association between Alzheimer’s disease and the presence of Gram-negative bacterial molecules in brain tissue.

Methods And Device For Use Of Phase Locked High Frequency Oscillations To Distinguish The Epileptogenic Ictal Core

UCLA researchers have developed a method and device for the automatic identification of phase-locked high-frequency oscillations to localize epileptogenic brain for neurological intervention.

New Compounds For The Treatment Of Diseases Related To Protein Misfolding

UCLA researchers in the Department of Neurology with an international team of scientists have developed compounds for therapeutic use in protein misfolding diseases.

Thrombospondins as a target to treat neuropathic pain

Neuropathic pain is a common problem, though, there are few existing pain medications have specific targets to treat this type of pain, and often lack efficacy and tolerance. The invention identifies specific proteins and related genes as targets for treating neuropathic pain in an animal model.

Therapeutic strategies for Huntington’s Disease using stop codon suppression

In Huntington’s Disease (HD), aberrant splicing of the huntingtin protein can produce a highly toxic peptide that accumulates in the brain. The invention describes methods to minimize the toxicity of spliced proteins.

  • Go to Page: