Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Pesticides and Insecticides

Categories

[Search within category]

Colorimetric Detoxifying Sensors for Fumigants and Aerosol Toxicants

Researchers at the University of California, Davis have developed a colorimetric sensor than can detect and detoxify fumigants simultaneously. 

Combination Therapy as Enhanced Antidote to Poisoning

Certain pesticides can be harmful, and there is a need for effective antidotes that can reverse accidental over-exposure by farm workers. UC San Diego researchers have recently developed a therapeutic modality that is a combination of compositions that may be effective as an antidote.

Colorimetric Sensing Of Amines

An affordable and easily synthesized indicator that can be applied to monitor reaction progress in a system using only one inexpensive and non-toxic agent.

At-Nozzle Injection of Agrochemicals

Researchers at the University of California, Davis have developed a direct, at-nozzle system for directly mixing and dispensing a carrier fluid with additives.

Sensitive Detection Of Chemical Species Using A Bacterial Display Sandwich Assay

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Endocrine disrupting compounds are found in increasing amounts in our environment, originating from pesticides, plasticizers, and pharmaceuticals, among other sources. These compounds have been implicated in diseases such as obesity, diabetes, and cancer. The list of chemicals that disrupt normal hormone function is growing at an alarming rate, making it crucially important to find sources of contamination and identify new compounds that display this ability. However, there is currently no broad-spectrum, rapid test for these compounds, as they are difficult to monitor because of their high potency and chemical dissimilarity.   To address this, UC Berkeley researchers have developed a new detection system and method for the sensitive detection of trace compounds using electrochemical methods.  This platform is both fast and portable, and it requires no specialized skills to perform. This system enables both the detection of many detrimental compounds and signal amplification from impedance measurements due to the binding of bacteria to a modified electrode. The researchers were able to test the system finding sub-ppb levels of estradiol and ppm levels of bisphenol A in complex solutions. This approach should be broadly applicable to the detection of chemically diverse classes of compounds that bind to a single receptor.  

Novel Molluscicide

  Background: Slugs and snails are among the most problematic invasive agricultural and horticultural pests. They cause crop loss, reduce crop yield and quality, cause product shipment rejection, and transmit plant and human pathogens. The most commonly used chemical molluscicides are toxic to pets and other organisms. These chemical pesticides are also harmful to the environment, are not cost effective, and with variable effficacy that is highly influenced by environmental conditions such as moisture.   Brief Description: UCR researchers have developed a novel potential biopesticide that targets slugs and snails using the recently discovered US strain of the nematode species Phasmarhabditis hermaphrodita. The European strain of this nematode (Nemaslug ®) is being used to successfully manage slugs and snails in Europe. Recent surveys show that consumers in the US are willing to pay more for a more effective and environmentally safe pest management alternative for these invasive gastropods. Phasmarhabditis hermaphrodita (singly or in combination with P. californica or P. papillosa) can be used effectively to manage slug and snail infestations, notably European brown garden snail (Cornu aspersum), Giant African land snail (Lissachatina fulica), gray field slug (Deroceras reticulatum) and greenhouse slug (Lehmannia valentiana).  

Development Of Pheromone-Assisted Techniques To Improve Efficacy Of Insecticide Baits Targeting Urban Pest And Species

Background: The pest control industry incurs an estimated $1.7B in damages every year. Current pest management techniques result in insecticide runoff and environmental contamination, which calls for improved bait technologies. Since most urban pests of interest use pheromones for organization and coordination of their colonies, many researchers have explored the possibility of using synthetic trail pheromones as an alternative strategy to mitigate this issue.   Brief Description: UCR Researchers have developed insecticidal baits that use highly target-specific control technologies. This novel pheromone-assisted technique (PAT) has little impact on the environment and non-target organisms. By combining the attractant pheromone of ants and existing bait matrices, they increased discovery and consumption of the baits by foraging ants, thus maximizing efficacy of the baits applied. Moreover, they have produced significant results at extremely low concentrations of the pheromone-assisted bait in comparison to the ones that are currently being used.

Development Of Biodegradable Bait Station For Liquid Ant Bait

Background: Current bait station designs and other pest control tools are not very ideal nor advanced – they leak, become excessively hydrated or dehydrated, and need frequent maintenance. The global pest control services market is expected to grow annually at 5.3% and the industry is always looking for unique ways to conquer them.  Brief Description: UCR Researchers have developed a novel, protected bait station that has controlled liquid bait release. The compact design contains a sugary, insecticide liquid bait that diffuses through an absorbent polymer or gel matrix. Only ants have access to the station and once an ant consumes the bait, the station biodegrades thus eliminating bait station cleanup.

Development Of Pheromone Assisted Techniques To Improve Efficacy Of Insecticide Sprays Targeting Urban Pest Ant Species

Background: Pheromones are chemical secretions that dictate behavior in many social insects such as ants, bees and termites. They use them for various pivotal roles in foraging, nest relocation, defense and reproduction. Implementation of pheromone trails that lead urban pests to their imminent doom is a very notable, strategic approach. Current pest management programs are in need of better synthetic pheromone formulations for a more effective and species-specific utilization.   Brief Description: UCR Researchers have developed a novel synthetic pheromone compound and management system that lures targeted ant species to an insecticide-treated area. This pheromone-assisted technique will maximize the efficacy of insecticide sprays by reducing insecticide contact in the environment while increasing exposure of ants for eradication.  

Titanium Dioxide (TiO2) Photocatalysts for Water Purification

More and more chemicals of various origins are being discharged into our local water streams, ending up at waste and water treatment facilities.  These chemicals comprising of pharmaceuticals, personal care products, and other various industrial chemicals are currently not removed by typical wastewater treatment practices.  Further, current regulations from the Food and Drug Administration do not require testing or removing these chemicals even as their amounts aggregate in our drinking water.  Therefore, the general public is currently being exposed to these dangerous chemicals that pose significant adverse health risks.                          

Pesticide Detection: Methyl Iodide and Methyl Bromide

Paper based sensors for detection of low concentrations of methyl iodide and methyl bromide, dibromo ethylene and other alkylating agents in air.

  • Go to Page: