Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Engineering > Engineering

Categories

[Search within category]

System and Method for High Density Assembly and Packaging of Micro-Reactors

High density micro-reactors are fabricated to form an array of wells into a surface for use in high throughput microfluidic applications in biology and chemistry. Researchers at the University of California, Irvine developed a method for increasing micro-reactor densities per unit area using rapidly self-assembled three-dimensional crystalline formation droplet arrays, and a device for performing the same.

Scalable Phased Array Standing Wave Architecture

Researchers at the University of California, Davis have developed a standing wave architecture for scalable and wideband millimeter wave and terahertz radiator and phased arrays.

Cloud-Based Pulmonary Spirometry System

Inventors at UC Irvine developed a portable spirometry system that automatically uploads patient pulmonary data to the Internet, and provides a cloud-based platform to analyze and share the data with an attending healthcare professional.

Revolutionizing Micro-Array Technologies: A Microscopy Method and System Incorporating Nanofeatures

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree incoherent holographic microscope using a plasmonic aperture.

Lensfree Super-Resolution Holographic Microscopy Using Wetting Films On A Chip

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree super-resolution holographic microscope using wetting films on a chip.

Fluorescent Imaging Of Single Nano-Particles And Viruses On A Smart-Phone

UCLA researchers in the Department of Electrical Engineering have developed a novel field portable fluorescence microscope that can be used as a smart phone accessory.

Quantification Of Plant Chlorophyll Content Using Google Glass

UCLA researchers in the Department of Electrical Engineering have invented a novel device that can quantify chlorophyll concentration in plants using a custom-designed Google Glass app.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Low Cost Wireless Spirometer Using Acoustic Modulation

The present invention relates to portable Spirometry system that uses sound to transmit pulmonary airflow information to a receiver.

Microfluidic Component Package

The present invention describes a component package that enables a microfluidic device to be fixed to a Printed Circuit Board (PCB) or other substrate, and embedded within a larger microfluidic system.

Imaging Platform Based On Nonlinear Optical Microscopy For Rapid Scanning Large Areas Of Tissue

The present invention discloses a nonlinear optical microscopy (NLOM) instrument for rapid imaging of wide areas and large volumes of biological tissues or other materials, ex vivo or in vivo, at sub-micron resolution. The instrument allows much larger field of view (FOV) at the same time improves the scan speed.

A Hundred Tiny Hands

100 Tiny Hands is an experiential learning program that imparts science, technology, engineering, and math (“STEM”) education to children ages six to twelve using storybook-inspired curriculum coupled with interactive educational “toolboxes.”

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

A Multiferroic Transducer For Audio Applications

Researchers in the Department of Mechanical Engineering at UCLA have developed a novel transducer for audio applications based on a multiferroic material.

Efficient Solar Energy Conversion to Electricity

Researchers at the University of California, Davis have developed a novel design for a solar power converter. The system uses an efficient selective absorber to harvest solar radiation.

A CMOS Compatible Fully-Integrated Switched-Domain Power Inverter Circuit

Modern mobile applications strive for the complete integration of all communication systems in CMOS. Unfortunately, it is conventionally difficult to efficiently generate high levels of RF power in scaled CMOS largely due to the inherently low voltage ratings of core transistors. To realize high output power with ~1V transistors, power combining techniques have been proposed whereby the output of several low-voltage power amplifier (PA) cells are combined via inductive transformers. However, power combining relies on ultra-thick metal that still carries large ohmic and substrate losses. These AC-AC losses, combined with the DC-AC losses of the PAs themselves, and the DC-DC losses of the battery-connected power converters, result in limited total transmitter efficiencies. Even modern digital PA techniques such as RF-DACs, digital Doherty, and digital out-phasing, which have been proposed to leverage the excellent switch performance of scaled transistors and offer reconfigurable operation, still require battery-connected DC-DC converters and RF transformers/power combiners, both of which result in cascaded losses.

Thermally Stable Silver Nanowire Transparent Electrode

UCLA researchers in the Department of Materials Science and Engineering have developed a novel transparent and flexible electrode material for optoelectronic device applications.

Unipolar Light Emitting Devices On Silicon Based Substrates

A process that provides a less expensive alternative for growing light emitting material compared to growing on lattice matched native III-V substrates.

Microfluidic In Situ Labelling On Stable Interfaces

The invention consists of a method for creating lateral cavity acoustic transducer (LCAT) devices with stable liquid-air interfaces capable of trapping particles in a user-specified size range. The devices can be used to trap small quantities of fluorescently-tagged cancer cells, leading to the potential for earlier detection and better treatment outcomes.

Self-Adaptive Control And Optimization Of Ultrafiltration

UCLA researchers in the Department of Chemical and Biomolecular engineering have developed a novel UF-RO system.

Customized Rheometer Tools By Three Dimensional Printing

Professor Mason and colleagues from UCLA’s Departments of Physics and Chemistry have developed a fast and inexpensive method of fabricating customized tools for rheological analysis.

Efficient And Stable Of Perovskite Solar Cells With All Solution Processed Metal Oxide Transporting Layers

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell with a metal oxide charge transport layer.

Amorphous Silicon And Polymer Hybrid Tandem Photovoltaic Cell

UCLA researchers in the Department of Materials Science and Engineering have developed a novel hybrid organic-inorganic solar cell that has a power conversion efficiency of ~10.5%.

  • Go to Page: