Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Environment > Other

Categories

[Search within category]

System And Method For Producing Polyhydroxyalkanoates From Organic Waste

Researchers at the University of California, Davis have developed an efficient method for producing polyhydroxyalkanoates (PHA) from organic waste using a halophilic microorganism.

Course Description: Bending The Curve: Climate Change Solutions

“There is no single technology that will solve climate change. If we want to prepare our students to fight global warming, they need to understand the scientific and the human dimensions of the problem, and we need to give them the tools to address the problem.”     - Professor V. Ramanathan

New Catalysts for Perchlorate Reduction in Water

Prof. Jinyong Liu’s lab at UCR has developed a new family of catalysts that reduce perchlorate in contaminated water and wastewater. The catalyst rapidly and completely reduces the toxic ClO4- into the innocuous chloride (Cl -) by breaking down the bonds between the central chlorine atom and all surrounding oxygen atoms. The reduction is a green process because no byproducts are produced in the water. The catalyst completely reduces perchlorate in a very wide concentration range, and retains high activity even in brine with concentrated salts. The catalyst using earth-abundant and non-toxic metal provides sustainable solutions to the perchlorate issues in terms of water and wastewater treatment, ion-exchange resin regeneration, and old munition/explosive disposal. Not only can this new catalyst reduce perchlorate but it may also be used to reduce other drinking water contaminants such as chlorate, chlorite, nitrate, nitrite, bromate, and iodate in a variety of environmental remediation scenarios.  Fig. 1 shows the reduction profiles of 1, 10, and 100 mM ClO4− (corresponding to 100,000 to 10,000,000 ppb) by the UCR catalyst at a loading of only 0.2 g/L. The reactions were conducted at 25 oC and under 1 atm H2. Fig. 2 shows the high activity for the catalytic reduction of 1 mM ClO4− by the UCR catalyst (just 0.2 g/L) in the typical resin generation wastes containing chloride and sulfate.

Buffer-Free Process Cycle For Co2 Sequestration And Carbonate Production From Brine Waste Streams With High Salinity

Researchers in the UCLA Department of Civil and Environmental Engineering have developed a novel process cycle to separate and enrich divalent cations such Ca2+ and Mg2+ from high salinity brine solutions for CO2 mineralization.

Highly Effective Multi-String Water Vapor Capturing System (Dehumidifier)

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a multi-string dehumidifier for humidification-dehumidification desalination systems.

Microfluidics Device and Methods of Detecting Airborne Agents

A microfluidic platform for real time sensing of volatile airborne agents.

Anti-Fouling And Self-Cleaning Electrically Conducting Low-Pressure Membranes For Water Treatment

Researchers in the UCLA Department of Civil and Environmental Engineering have developed anti-fouling and self-cleaning membranes for use in municipal and industrial wastewater treatment, with particular applications for anaerobic membrane bioreactors.

System and Method for Flexible Low-Energy Membrane-Based Liquid Purification

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a platform and method for membrane-based water purification and desalination that combines operational flexibility with energy efficiency, allowing effective treatment and desalination of raw feed water over a wider range of solute concentrations and product recovery.

Nontoxic Alternatives to Phthalate Plasticizers for PVC

Phthalates are synthetic chemicals added to polyvinyl chloride (PVC) to make flexible plastics. Due to health concerns, phthalates have been banned from children's products in the United States and Europe, but they are still used in a wide range of consumer products, including food wrap, medical devices, automotive parts, and building materials., chemicals that interfere with the body's hormone systems. Effects on wildlife of phthalates in the environment are also a concern. Phthalates are readily absorbed by the body through inhalation, ingestion, or skin contact. Phthalate exposure has been associated with reproductive and developmental abnormalities in animal studies. Epidemiological studies in humans also suggest that exposure to phthalates may have adverse health effects, including reproductive abnormalities that can lead to infertility. Phthalates are metabolized by the body into compounds that are considered endocrine disruptors. Because phthalates are not chemically bound to the PVC polymer, they tend to migrate out of plastic products and into the environment. The same is true of alternative plasticizers currently on the market. Dr. Rebecca Braslau’s laboratory has developed an approach to use compounds to replace phthalates that can be chemically attached to the PVC polymer chain: “internal plasticizers.”    

Portable waterborne pathogen detector

The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.

At-Nozzle Injection of Agrochemicals

Researchers at the University of California, Davis have developed a direct, at-nozzle system for directly mixing and dispensing a carrier fluid with additives.

Combined Greywater-Storm Water System With Forecast Integration

Water is a scarce resource in some part of the United States, and recent droughts in the Midwest and the South have elevated the issue of water scarcity to a national level. Existing water sources will face increasing strain due to population growth and climate change, and financial and regulatory barriers will prevent the development of new sources. One method to alleviate water scarcity is storm water capture. Storm water can be used for non-potable applications such as irrigation, laundry, and toilet flushing to significantly reduce domestic municipal water consumption. However, in arid regions of the US, rain comes in short, intense storms only a few months out of the year, and the duration and intensity of these storms require large storage tank volumes for storm water capture to be financially feasible.    One solution is to integrate storm water capture with greywater capture. Greywater is a reliable source of water for domestic reuse, and includes water from washbasins, laundry, and showers (kitchen sinks and water for toilet flushing are considered blackwater). Combining greywater-storm water in the same collection system allows for a much smaller storage tank. A UC Berkeley researcher, along with other researchers, have developed aforecast-integrated automated control system for combined greywater-storm water storage and reuse. A simple and reliable approach for managing greywater and storm water collection at a household or community level is provided, allowing for the near-continuous monitoring and adjustment of water quantity and quality in a combined greywater-storm water storage tank based on monitored feedback/output from individual, tank-specific sensors and/or sensors located elsewhere in the water collection system.   

Nanoporous Metal Foam Filters for Clean Air

Researchers at the University of California, Davis have developed nanoporous metal foams as universal pollutant arrestors.

Method for Optimizing System Efficiency and Demand Response Performance of Variable-Speed/Variable-Capacity Furnaces, Heat Pumps and Air Conditioners

Researchers at the University of California, Davis have developed a methodology which maximizes the overall efficiency of variable-speed heat pumps, furnaces and air conditioner systems with minimal hardware changes.

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

An Efficient E-Cigarette Aerosol Generation And Exposure System For Rodents

UCLA researchers have developed an efficient electronic cigarette aerosol generator and exposure system for use in mice to study the health effects of electronic cigarette aerosol.

Quantification Of Plant Chlorophyll Content Using Google Glass

UCLA researchers in the Department of Electrical Engineering have invented a novel device that can quantify chlorophyll concentration in plants using a custom-designed Google Glass app.

Organic Waste Material Treatment

A researcher at the University of California, Davis has developed a method for treating organic waste materials.

Renewable Energy Synthesis System

Researchers at the University of California, Davis have developed a novel system for acetoin and 2,3-butanediol synthesis from carbon dioxide.

Efficient Solar Energy Conversion to Electricity

Researchers at the University of California, Davis have developed a novel design for a solar power converter. The system uses an efficient selective absorber to harvest solar radiation.

Novel Photovoltaic Desalination System

Researchers at the University of California, Davis have developed a novel method of desalination without an external power source.

Clarifying Water And Wastewater With Fungal Treatment/Bioflocculation

Researchers at the University of California, Davis have developed a low cost method of cleaning water and wastewater by removing microalgae and bacteria with fungal bioflocculation.

Novel Molluscicide

  Background: Slugs and snails are among the most problematic invasive agricultural and horticultural pests. They cause crop loss, reduce crop yield and quality, cause product shipment rejection, and transmit plant and human pathogens. The most commonly used chemical molluscicides are toxic to pets and other organisms. These chemical pesticides are also harmful to the environment, are not cost effective, and with variable effficacy that is highly influenced by environmental conditions such as moisture.   Brief Description: UCR researchers have developed a novel potential biopesticide that targets slugs and snails using the recently discovered US strain of the nematode species Phasmarhabditis hermaphrodita. The European strain of this nematode (Nemaslug ®) is being used to successfully manage slugs and snails in Europe. Recent surveys show that consumers in the US are willing to pay more for a more effective and environmentally safe pest management alternative for these invasive gastropods. Phasmarhabditis hermaphrodita (singly or in combination with P. californica or P. papillosa) can be used effectively to manage slug and snail infestations, notably European brown garden snail (Cornu aspersum), Giant African land snail (Lissachatina fulica), gray field slug (Deroceras reticulatum) and greenhouse slug (Lehmannia valentiana).  

Development Of Pheromone-Assisted Techniques To Improve Efficacy Of Insecticide Baits Targeting Urban Pest And Species

Background: The pest control industry incurs an estimated $1.7B in damages every year. Current pest management techniques result in insecticide runoff and environmental contamination, which calls for improved bait technologies. Since most urban pests of interest use pheromones for organization and coordination of their colonies, many researchers have explored the possibility of using synthetic trail pheromones as an alternative strategy to mitigate this issue.   Brief Description: UCR Researchers have developed insecticidal baits that use highly target-specific control technologies. This novel pheromone-assisted technique (PAT) has little impact on the environment and non-target organisms. By combining the attractant pheromone of ants and existing bait matrices, they increased discovery and consumption of the baits by foraging ants, thus maximizing efficacy of the baits applied. Moreover, they have produced significant results at extremely low concentrations of the pheromone-assisted bait in comparison to the ones that are currently being used.

New Strategy for Biofilm Control

Biofilms are a pervasive problem across numerous global industries, including oil & gas production and healthcare. Microbes have spent millennia learning how to survive, and society remains in critical need of effective strategies to remove them without harsh or damaging processes. Microbial biofouling currently costs tens of billions of dollars a year to deal with, from fouling of filtration membranes, to the corrosion of ship hulls. New biofilm clearance strategies are now required, to harness microbiological understanding to efficiently eradicate microbial contamination.

  • Go to Page: