Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Environment > Other

Categories

[Search within category]

Producing Antioxidants, Sugars and Protein-Rich Components from Agricultural Byproducts

Researchers at the University of California, Davis have developed a process for extracting high-value components from nut and fruit waste products.

Separation System Using Integrated Microwave-Infrared Technology to Reduce Greenhouse Gas Emissions and Potential Pathogen Impacts Associated with Cow Manure

Researchers at the University of California, Davis have developed a separation system using microwave-infrared technology to effectively eliminate pathogens and reduce both the moisture content and potential greenhouse gas emissions of cow manure.

Charged Membranes Incorporated With Porous Polymer Frameworks

Ion-exchange membranes have been established for a variety of industrial applications, including energy and environmental technologies related to water treatment, fuel cells, and flow batteries. However, the limited tunability and adverse ion permeability-selectivity tradeoff exhibited by traditional ion-exchange membranes limit their development. To address this limitation, researchers at UC Berkeley developed a new class of composite ion-exchange membrane materials incorporated with highly tunable porous aromatic frameworks (PAFs). The Berkeley researchers show that an assortment of PAF variants can be easily embedded into charged membranes, where the choice of PAF filler can be used to optimize the physical, ion transport, and adsorptive properties of the membrane according to their targeted application. Material characterizations indicate that numerous charged membranes embedded with PAFs exhibit excellent dispersibility, interfacial compatibility, structural flexibility, and pH stability. Proton conductivity and water uptake measurements also indicate that the exceptionally high porosity of PAFs enhances ion diffusion in membranes, while abundant, favorable PAF-polymer interactions decrease non-selective swelling pathways typically observed in highly charged ion-exchange membranes. Furthermore, adsorption experiments demonstrate that ion-selective PAFs can be embedded into charged membranes to tune the ion selectivity of the membrane and also enable their use as membrane adsorbents. Test show promise for technology to improve the general performance and tunability of ion-exchange membrane technologies.

Non Intrusive Workflow Assessment (NIWA) for Manufacturing Optimization

The invention is a smart non-intrusive workflow assessment platform for monitoring and optimizing manufacturing environments. The platform monitors environmental and energy metrics, and provides learning models to classify workers’ activities and relate them to the equipment utilization and performance. Correlating both stream of data enables both workers and supervisors to improve the efficiency of the whole manufacturing process and at an affordable price.

Multifunctional Separations Using Adsorbent-Based Membranes

The selective separation of trace components of interest from various mixtures (e.g., micropollutants from groundwater, lithium or uranium from seawater, carbon dioxide from air) presents an especially pressing technological challenge. Established materials and separation processes seldom meet the performance standards needed to efficiently isolate these trace species for proper disposal or re-use. To address this issue, researchers at UC Berkeley developed a novel separation strategy in which highly selective and tunable adsorbents or adsorption sites are embedded into membranes. In this approach, the minor target species are selectively captured by the embedded adsorbents or adsorption sites while the species transport through the membrane. Simultaneously, the mixture can be purified through traditional membrane separation mechanisms. As a proof-of-concept, the researchers incorporated Hg2+-selective adsorbents into electrodialysis membranes that can simultaneously capture Hg2+ via an adsorption mechanism while desalinating water through an electrodialysis mechanism. Adsorption studies demonstrated that the embedded adsorbents maintain rapid, selective, regenerable, and high-capacity Hg2+ binding capabilities within the membrane matrix. Furthermore, when inserted into an electrodialysis setup, the composite membranes successfully capture all Hg2+ from various Hg2+-spiked water sources while permeating all other competing cations to simultaneously enable desalination. Finally, using an array of other ion-selective adsorbents, the Berkeley team showed that this strategy can in principle be applied generally to any target ion present in any water source. This multifunctional separation strategy can be applied to existing membrane processes to efficiently capture targeted species of interest, without the need for additional expensive equipment or processes such as fixed-bed adsorption columns.

A Novel Catalyst for Aqueous Chlorate Reduction with High Activity, Salt Resistance, and Stability

Prof. Jinyong Liu’s lab at UCR has developed a novel heterogeneous catalyst for aqueous ClO3− reduction. The catalyst contains earth-abundant molybdenum (Mo) and is 55-fold more active than palladium on carbon (Pd/C). Under 1 atm H2 and room temperature, the bimetallic catalyst (MoOx−Pd/C) enables rapid and complete reduction of ClO3− in a wide concentration range (e.g., 1 μM to 1 M) and exhibits strong resistance to concentrate salts such as chloride, sulfate, and bromide at 1 to 5 M. In a batch reactor setup, the catalyst was reused for twenty cycles of 0.18 M ClO3− reduction and no activity loss was observed. Fig. 1 shows the effect of concentrated salts on the reduction of 1 mM ClO3− by the MoOx-Pd/C catalyst at a loading of 0.2 g/L. The reactions were conducted at 25 oC and under 1 atm H2. Fig. 2 shows the reduction of 1 M ClO3− in DI water and the treatment of a synthetic chlor-alkali waste brine sample (0.17 M of ClO3− in 3.6 M of NaCl) by 0.5 g/L MoOx-Pd/C.   Fig. 3 shows the profiles of the reduction of 0.18M ClO3− spikes in a multiple-spike reaction series. The decrease of activity was only caused by the gradual build-up of concentrated Cl− (see details in the publication).  

Decorating Chromatin for Precise Genome Editing Using CRISPR

A novel fusion construct that fuses Cas9 to a truncated version of human PRDM9 with the purpose of improving precise genome editing via homologous direceted repair (HDR). PRDM9 is a protein that deposits histone marks H3K4me3 and H3K36me3 simultaneously during meiosis to mark recombination hot spots where crossover occurs and is resolved by homologous recombination. H3K36me3 has also been demonstrated to be required upstream of homologous recombination repair after double stranded breaks (DSBs) and during V(D)J recombination for adaptive immunity. Recent evidence suggests PRDM9 acts as a pioneer factor opening closed chromatin. The newly engineered PRDM9C-Cas9 fusion construct shows increased HDR and decreased non-homologous end joining mediated insertions and deletions (indels).

Low-Cost Paper-Based Microfluidic Diagnostic Device

Prof. Mulchandani and his colleagues from the University of California, Riverside have developed a new paper-based microfluidic platform for the simple and low-cost fabrication of single-walled carbon nanotube (SWNT)-based chemiresistive nanobiosensor arrays for multianalyte sensing from a single small volume sample that may be used as point-of-care diagnostic for a variety of purposes, including healthcare, food safety, environment, etc. This device is created by utilizing a wax printer to construct well-defined hydrophobic barriers for equal splitting and delivery of fluid and an inkjet printer to fabricate chemiresistors using a water-based SWNT ink on a paper substrate. Currently, the quantitative and selective detection of both human serum albumin (HSA) and human immunoglobulin G (hIgG) simultaneously in urine has been demonstrated by UCR. This paper-based chemiresistive biosensor is easy to fabricate, and designed for cost-effective, rapid, sensitive and selective detection of  analyte(s) of interest. This technology provides a platform for automated, disposable paper-based point-of-care diagnostics with multiplexed detection capability and microfluidic controls. Fig 1: A 3D microfluidic multiplexed paper-based biosensor array device.

Novel Phage CRISPR-Cas Effectors and Uses Thereof

UC Berkeley researchers have discovered a novel family of proteins denoted Cas12L within the Type V CRISPR Cas superfamily distantly related to CasX, CasY and other published type V sequences.  These Cas12L proteins utilize a guide RNA to perform RNA-directed cleavage of DNA.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

System And Method For Producing Polyhydroxyalkanoates From Organic Waste

Researchers at the University of California, Davis have developed an efficient method for producing polyhydroxyalkanoates (PHA) from organic waste using a halophilic microorganism.

Covalent Organic Framework With Exceptional Water Sorption Properties

A new covalent organic framework (COF) with defective square lattice topology and exceptional water sorption properties stemming fro its unique framework structure. The COF exhibits a working capacity of 0.23 g(H2O)/g(COF) between 20 and 40% relative humidity without displaying hysteretic behavior. Furthermore, it maintains these promising water sorption properties after several uptake and release cycles. This material could be used as a sorbent for water harvesting or other water sorption related applications.

Improved Cas12a Proteins for Accurate and Efficient Genome Editing

Mutated versions of Cas12a that remove its non-specific ssDNA cleavage activity without affecting site-specific double-stranded DNA cutting activity. These mutant proteins, in which a short amino acid sequence is deleted or changed, provide improved genome editing tools that will avoid potential off-target editing due to random ssDNA nicking.

Course Description: Bending The Curve: Climate Change Solutions

“There is no single technology that will solve climate change. If we want to prepare our students to fight global warming, they need to understand the scientific and the human dimensions of the problem, and we need to give them the tools to address the problem.”     - Professor V. Ramanathan

New Catalysts for Perchlorate Reduction in Water

Prof. Jinyong Liu’s lab at UCR has developed a new family of catalysts that reduce perchlorate in contaminated water and wastewater. The catalyst rapidly and completely reduces the toxic ClO4- into the innocuous chloride (Cl -) by breaking down the bonds between the central chlorine atom and all surrounding oxygen atoms. The reduction is a green process because no byproducts are produced in the water. The catalyst completely reduces perchlorate in a very wide concentration range, and retains high activity even in brine with concentrated salts. The catalyst using earth-abundant and non-toxic metal provides sustainable solutions to the perchlorate issues in terms of water and wastewater treatment, ion-exchange resin regeneration, and old munition/explosive disposal. Not only can this new catalyst reduce perchlorate but it may also be used to reduce other drinking water contaminants such as chlorate, chlorite, nitrate, nitrite, bromate, and iodate in a variety of environmental remediation scenarios.  Fig. 1 shows the reduction profiles of 1, 10, and 100 mM ClO4− (corresponding to 100,000 to 10,000,000 ppb) by the UCR catalyst at a loading of only 0.2 g/L. The reactions were conducted at 25 oC and under 1 atm H2. Fig. 2 shows the high activity for the catalytic reduction of 1 mM ClO4− by the UCR catalyst (just 0.2 g/L) in the typical resin generation wastes containing chloride and sulfate.

Buffer-Free Process Cycle For Co2 Sequestration And Carbonate Production From Brine Waste Streams With High Salinity

Researchers in the UCLA Department of Civil and Environmental Engineering have developed a novel process cycle to separate and enrich divalent cations such Ca2+ and Mg2+ from high salinity brine solutions for CO2 mineralization.

Microfluidics Device and Methods of Detecting Airborne Agents

A microfluidic platform for real time sensing of volatile airborne agents.

System and Method for Flexible Low-Energy Membrane-Based Liquid Purification

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a platform and method for membrane-based water purification and desalination that combines operational flexibility with energy efficiency, allowing effective treatment and desalination of raw feed water over a wider range of solute concentrations and product recovery.

Nontoxic Alternatives to Phthalate Plasticizers for PVC

Phthalates are synthetic chemicals added to polyvinyl chloride (PVC) to make flexible plastics. Due to health concerns, phthalates have been banned from children's products in the United States and Europe, but they are still used in a wide range of consumer products, including food wrap, medical devices, automotive parts, and building materials., chemicals that interfere with the body's hormone systems. Effects on wildlife of phthalates in the environment are also a concern. Phthalates are readily absorbed by the body through inhalation, ingestion, or skin contact. Phthalate exposure has been associated with reproductive and developmental abnormalities in animal studies. Epidemiological studies in humans also suggest that exposure to phthalates may have adverse health effects, including reproductive abnormalities that can lead to infertility. Phthalates are metabolized by the body into compounds that are considered endocrine disruptors. Because phthalates are not chemically bound to the PVC polymer, they tend to migrate out of plastic products and into the environment. The same is true of alternative plasticizers currently on the market. Dr. Rebecca Braslau’s laboratory has developed an approach to use compounds to replace phthalates that can be chemically attached to the PVC polymer chain: “internal plasticizers.”    

Portable waterborne pathogen detector

The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.

At-Nozzle Injection of Agrochemicals

Researchers at the University of California, Davis have developed a direct, at-nozzle system for directly mixing and dispensing a carrier fluid with additives.

Combined Greywater-Storm Water System With Forecast Integration

Water is a scarce resource in some part of the United States, and recent droughts in the Midwest and the South have elevated the issue of water scarcity to a national level. Existing water sources will face increasing strain due to population growth and climate change, and financial and regulatory barriers will prevent the development of new sources. One method to alleviate water scarcity is storm water capture. Storm water can be used for non-potable applications such as irrigation, laundry, and toilet flushing to significantly reduce domestic municipal water consumption. However, in arid regions of the US, rain comes in short, intense storms only a few months out of the year, and the duration and intensity of these storms require large storage tank volumes for storm water capture to be financially feasible.    One solution is to integrate storm water capture with greywater capture. Greywater is a reliable source of water for domestic reuse, and includes water from washbasins, laundry, and showers (kitchen sinks and water for toilet flushing are considered blackwater). Combining greywater-storm water in the same collection system allows for a much smaller storage tank. A UC Berkeley researcher, along with other researchers, have developed aforecast-integrated automated control system for combined greywater-storm water storage and reuse. A simple and reliable approach for managing greywater and storm water collection at a household or community level is provided, allowing for the near-continuous monitoring and adjustment of water quantity and quality in a combined greywater-storm water storage tank based on monitored feedback/output from individual, tank-specific sensors and/or sensors located elsewhere in the water collection system.   

Sieve Container For Contactless Media Exchange For Cell Growth

Media that contains nutrients and growth factors is necessary to grow all types of cells, a process that is widely used in many fields of research. Such media should be routinely changed either to different media or a fresh batch of the same media. This change currently involves either using a pipette to transfer cells from their current dish of media to a new dish, or aspirating the media out of the dish and replacing it with new media. Both methods have inherent risks to stressing and damaging the cells. Researchers at UCI have developed a unique dish for growing cells that allows for safer aspiration of the old media, which reduces stress and damage to the cells.

An Efficient E-Cigarette Aerosol Generation And Exposure System For Rodents

UCLA researchers have developed an efficient electronic cigarette aerosol generator and exposure system for use in mice to study the health effects of electronic cigarette aerosol.

Quantification Of Plant Chlorophyll Content Using Google Glass

UCLA researchers in the Department of Electrical Engineering have invented a novel device that can quantify chlorophyll concentration in plants using a custom-designed Google Glass app.

  • Go to Page: