Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Industrial/ Energy

Categories

[Search within category]

Highly-Permeable Polyaniline Membranes with Graphene Oxide Additive and CO2 Separations from Flue Gas

UCLA researchers in the Departments of Chemistry and Biochemistry and Civil and Environmental Engineering have developed a method to selectively tune polymer membranes (polyaniline) by incorporating graphene oxide. Additionally, the films produced by this method are capable of separating greenhouse gas carbon dioxide (CO2) from air on an industrially relevant scale.

A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care

UCLA researchers in the Department of Bioengineering have developed a textile-based sensor system (TS system) for wireless, wearable biomonitoring.

Biosynthetic Production Of L-4-Chlorokynurenine

The non‐proteinogenic amino acid l‐4‐chlorokynurenine (l‐4‐Cl‐Kyn) is a next‐generation, fast‐acting oral prodrug for the treatment of major depressive disorder. Additional studies report that this drug candidate is effective in animal models for the treatment of neuropathic pain, epilepsy, and Huntington's disease.  After active transport across the blood–brain barrier, it is enzymatically converted into the active agent 7‐chlorokynurenic acid, which is a highly selective competitive antagonist of the N‐methyl‐d‐aspartic acid (NMDA) receptor.   Suicide is 2-7x higher in Veterans than non-veterans, and may be related to brain kynurenine pathway (KP) dysregulation and NMDA receptor (NMDAR) hyperactivation.  L-4-Chlorokynurenine (L-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder (Double-Blind, Placebo-Controlled, Phase 2 Trial to Test Efficacy and Safety of AV-101 (L-4-chlorokynurenine) as Adjunct to Current Antidepressant Therapy in Patients With Major Depressive Disorder (the ELEVATE Study)).

Efficient Production of Cellulase Enzymes Using Transient Agroinfiltration

Researchers at the University of California, Davis have developed a method to produce cellulase enzymes by utilizing agroinfiltration to transiently express full-length cellulases in plant tissue.

In plantae production of heterologous proteins using viral amplicons

Researchers at the University of California, Davis have developed a viral amplicon-based vector system for heterologous protein expression and production in plants.

Spray Dry Method for Calcium Cross-linked Alginate Encapsulation of Biological and Chemical Moieties via the Use of Chelating Agents

Researchers at the University of California, Davis have developed a one-step spray dry calcium cross-linked alginate encapsulation process where the calcium is released from a chelating agent.

Light-Tunable Biopolymer Hydrogels

Brief description not available

Method For Production Of Fatty Acids In Blue-Green Algae

Currently, renewable fatty acids are obtained solely from plant oils. Medium chain fatty acids (C8-C14) are typically sourced from coconut and palm oil, whereas longer chain saturated and unsaturated fatty acids are typically sourced from tallow, soy, corn or sunflower oil. Fatty acids are widely used for food, personal care products, industrial applications (e.g., lubricants, adhesives, detergents and plastics), as well as increasingly as biofuels. The demand for renewable fatty acids is rising and expanding. Given the current understanding of biological pathways it becomes possible to utilize other organisms, especially microorganisms, for the production of renewable chemicals such as fatty acids.

System And Method For Producing Polyhydroxyalkanoates From Organic Waste

Researchers at the University of California, Davis have developed an efficient method for producing polyhydroxyalkanoates (PHA) from organic waste using a halophilic microorganism.

Rheological Tuning of the Crystal Growth

Solutions of shear-thinning polymers are known to decrease in viscosity as a shear force is applied to the solution. In this work, the inventors show that by pre-shearing a shear-thinning polymer solution mixed with a precursor solution of a semiconducting crystal we can tune the size and morphology of the growing crystals, which governs the optoelectronic properties of the formed crystals. By pre-shearing the solution we are able to lower the viscosity of the solution, which plays a key role in the liquid phase processing (eg., coating processes). By forming a thinner, low-viscosity coating, we are able to tune the nucleation and growth rate of the crystals to form crystals that are smaller and more uniformly distributed in size, leading to a uniform and conformal coating. This approach allows us to coat a uniform layer of semiconducting crystals, which is necessary for developing functional optoelectronic devices.

Conversion Of Co2 To Higher Alcohols Using Photosynthetic Microorganisms

UCLA researchers have discovered a way to convert carbon dioxide into potential biofuels through the metabolic engineering of cyanobacteria.  This method enables more efficient production of biofuels using an industrial waste product as a starting material.

Cephalopod-Inspired Adaptive Infrared Camouflage Materials and Systems

This technology is a new class of materials capable of thermal regulation and active camouflage. These cephalopod-inspired materials, configurable to different geometries, can be used in many sectors, ranging from consumer to industrial to military applications.

Anti-Fouling And Self-Cleaning Electrically Conducting Low-Pressure Membranes For Water Treatment

Researchers in the UCLA Department of Civil and Environmental Engineering have developed anti-fouling and self-cleaning membranes for use in municipal and industrial wastewater treatment, with particular applications for anaerobic membrane bioreactors.

Method For Indefinite Storage And Preservation Of Membrane Precursors

UCLA researchers in the Department of Bioengineering have developed a novel strategy for the creation of biomimetic lipid bilayer membrane using a high freezing point lipid-containing solvent.  Using this method, the membrane precursor is frozen/immobilized prior to the completion of the spontaneous process of bilayer self-assembly, and the process can be resumed later by simply thawing and allowing membrane formation to resume.

Engineering Polyketide Synthase Machinery in Cyanobacteria

Complex polyketides include a family of natural products that possess a wide variety of pharmacological or biological activities. Numerous polyketides and their semisynthetic derivatives have been approved for clinical use in humans or animals, including antibiotics, antifungal agents, immunosuppressants, antiparasitic agents and insecticides. All these natural products share a common mechanism of biosynthesis and are produced by a class of enzymes called polyketide synthases (PKSs). Besides their essential role in the biosynthesis of a vast diversity of natural products, the versatility of PKSs can be further emphasized as they can be redesigned and repurposed to produce novel molecules that could be used as fuels, industrial chemicals, and monomers. Most polyketide producers are slow-growing, recalcitrant to genetic manipulation, or even non-culturable.

Synthetic Algal Promoters as a Tool for Increasing Nuclear Gene Expression in Green Algae

Algae have enormous potential as bio-factories for the efficient production of a wide array of high-value products, and eventually as a source of renewable biofuels. However, tools for engineering the nuclear genomes of algae remain scarce and limited in functionality, in part due to lack of strong promoters.

Non-Oxidative Glycolysis For Production Of Acetyl-CoA Derived Compounds

The Liao group at UCLA has constructed a Non-Oxidative Glycolysis pathway for the synthesis of biofuel precursors with a 100% carbon conversion rate.

Hydrocarbon Production, H2 Evolution And CO2 Conversion By Whole Cells Or Engineered Azotobacter Vinelandii Strains

Using metal catalysts in industrial synthesis of hydrocarbons for fuels can be costly, inefficient, and harmful to the environment. This simple approach uses genetically-modified soil bacterium to synthesize valuable hydrocarbons using recycled components. This novel process is environmentally-friendly and is more cost- and energy-efficient than current industrial synthesis.

Biomass-Derived Polymers And Copolymers Incorporating Monolignols And Their Derivatives

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry have developed a novel synthetic strategy for the fabrication of biomass-derived polymers incorporating underutilized lignin derivatives.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Organic Waste Material Treatment

A researcher at the University of California, Davis has developed a method for treating organic waste materials.

Renewable Energy Synthesis System

Researchers at the University of California, Davis have developed a novel system for acetoin and 2,3-butanediol synthesis from carbon dioxide.

Method and System for Ultra High Dynamic Range Nucleic Acid Quantification

Researchers at UC Irvine developed a device and method that combines the high dynamic range and high accuracy of digital PCR (dPCR) with the real-time analysis of quantitative PCR (qPCR) to achieve a ultra-high dynamic range PCR over 10 to 12 orders of magnitude. The present method is accomplished by a highly integrated design that optimally packs, thermocycles, and images as many as 1 million reaction vessels.

Self-Adaptive Control And Optimization Of Ultrafiltration

UCLA researchers in the Department of Chemical and Biomolecular engineering have developed a novel UF-RO system.

  • Go to Page: