Browse Category: Agriculture & Animal Science > Devices

[Search within category]

Silicon Solar Cells that Absorb Solar Photons Above 2.2 eV and are Transparent to Solar Photons Below 2.2 eV

Traditionally, land can be used for either crop growth or energy production. This technology optimizes the efficiency of land use by combining both. Researchers at the University of California, Davis have developed solar cell designs that absorb only specific solar photons (> 2.2 eV) to create electricity, while letting through beneficial light (< 2.2 eV) for efficient crop growth.

Operant Behavioral Assay

Researchers at the University of California, Davis have developed an operant behavioral assay to study thermosensation, pain, or avoidance and tolerance of an animal to noxious environments.

Rapid and Low-cost Sensor for Measuring Volatile Compounds in Nuts and Oils

Researchers at the University of California, Davis have developed a sensor for measuring food spoilage of nuts, seeds, and oils. It measures volatile organic compounds as a biomarker of food spoilage through a simple device in only three minutes.

(SD2022-401) Dynamic Counterbalance to Enable Chronic Free-behaving Research with Small Animals

Researchers from UC San Diego have created a system to enable animal model research by reducing the physical impact of weight introduced by body worn or implanted instrumentation. It does so by dynamically counterbalancing the force introduced by the additional mass of the instrumentation. Together the dynamic counterbalance system, dynamic adjustment arm, and dynamic pulley provide a low cost system that addresses several of the pressing weight constraints of chronic small animal experiments. Together they will enable researchers to conduct experiments that would not have been possible due to weight restrictions of existing recording instruments.

Bio-mimetic Wetness Device and Method

In 2019, the Food and Agriculture Organization of the United Nations estimated that between 20 to 40 percent of global crop production are lost to plant diseases and pests annually, with plant diseases costing the global economy roughly $220B each year. Disease-warning systems are currently being used by growers to preemptively mitigate destructive events using chemical treatment or biological management. Meteorological factors including rainfall, humidity, and air temperature are all considered in these systems, but the measurement of leaf wetness duration (LWD) is important to its governing role in infection processes for many fungal pathogens. The longer a leaf stays wet, the higher the risk that disease will develop, because many plant pathogen propagules require several hours of continuous moisture to germinate and initiate infection The current gold standard to measuring LWD is using the capacitive leaf wetness sensor (LWS). The LWS functions by measuring a change in the capacitance seen at its surface which then yields an output signal that changes according to its surface wetness. Commercial leaf wetness sensors estimate the amount of surface water and leaf wetness duration by measuring the change in capacitance of a surface that accumulates condensed water. However, the one-size-fits-all commercial sensors do not accurately reflect the variation in leaf traits (particular shape, texture, and hydrophobicity) these traits strongly affect surface wettability (hydrophilicity) and vary widely among plant species.

Robotic Leaf Detection And Extraction System

Brief description not available

METHOD AND SYSTEM FOR THE NON-INVASIVE RECORDING OF MARINE MAMMAL SLEEP IN THE WILD

Understanding of biophysical processes in marine mammals, like elephant seals, is limited by our ability to monitor wild behavior. Elephant seals spend the majority of their life at sea, reaching depths of over 1500 m that challenge even the most recent advances in biometric monitoring devices. Many existing devices for monitoring electrophysical signals in seals are also invasive and require skin or skull perforation for electrode implantation. A UC Santa Cruz researcher has designed a water-resistant, non-invasive device that can withstand pressures of 3000 psi and is capable of monitoring over twenty electrophysiological signals in wild elephant seals.

Biodegradable Potentiometric Sensor to Measure Ion Concentration in Soil

The inventors have developed ion-selective potentiometric sensors for monitoring soil analytes with naturally degradable substrate, conductor, electrode, and encapsulant materials that minimize pollution and ecotoxicity. This novel sensor-creation method uses printing technologies for the measurement of nitrate, ammonium, sodium, calcium, potassium, phosphate, nitrite, and others. Monitoring soil analytes is key to precision agriculture and optimizing the health and growth of plant life. 

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Automated Drosophila Maintenance System

Drosophila spp., also known as fruit flies, are widely used in genetic research. Drosophila lines (e.g. flies with a particular mutation) can only be stored as live animals – they cannot be frozen and remain viable. So to maintain the stocks, the live flies are manually transferred from an old vial to a new vial on a regular basis (every 1-2 weeks). Some Drosophila labs maintain hundreds or even thousands of individual lines and so maintenance of these lines can be very time consuming. A UC Santa Cruz Drosophila researcher has developed a simpler and more efficient method of transferring the flies that requires significantly less hands-on work.

Chronoprints: Identifying Adulterated Samples in Food and Drug Safety

Prof. Will Grover and his colleague at the University of California have developed a method to identify adulterated drugs and foods by observing how they behave when disturbed by temperature changes or other causes. Images of the sample’s behavior as it freezes over time are captured and processed into chronoprints.  Chronoprints are fundamentally bitmap images of samples on a computer, and it is possible to leverage existing image analysis and comparison techniques that have been already developed to analyze Chronoprints. Fig. 1 Producing a "chronological fingerprint" or chronoprint capturing how six samples (in this example, authentic and adulterated samples of an over-the-counter liquid cold medicine) respond to a perturbation over space and time (in this case, a rapidly changing temperature gradient). (A) A microfluidic thermometer chip containing the samples is partially immersed in liquid nitrogen to establish a rapidly changing temperature gradient along the chip. (B) The chip contains six samples (red) loaded in microfluidic channels that run parallel to the dynamic temperature gradient. (C) An inexpensive USB microscope records a video of the physical changes in the samples as they react to the dynamic temperature gradient.  Fig. 2 By reducing each channel image to a single column of pixels, and then placing these columns side-by-side, we create a bitmap image (the sample’s chronoprint) that captures how the sample changes over space (the y-axis) and time (the x-axis). Finally, by comparing the chronoprints of all six samples in the chip, we can determine whether the samples are either likely the same or definitely different.  

Non-Living Edible Surrogates For Process Validation Food Processing Plants

Researchers at the University of California, Davis have developed a surface sanitation validation system that utilizes a non-living edible surrogate to potentially help determine food processing efficacy.

Devices For Integrated Solar Photodialysis Of Salt Water

Researchers at UCI have developed a compact device for the rapid desalination of water which is driven entirely by renewable solar energy.

Fish Tank Effluent Sampling System

Researchers at the University of California, Davis have developed a valve system to collect effluent waste from fish in a closed recirculating aquaponic system (RAS).

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature.The feature vibrates in order to counteract particle-trapping micro-vortices formed within the device.Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and thereby makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

A paper-integrated microfluidic device for the preparation of monodisperse microcapsules and microvesicles

Many applications, ranging from in vivo cell culture growth to drug delivery, rely on microcapsules to encapsulate and protect cells or molecules until their desired release. These microcapsules are typically generated in immiscible fluid, which must be depleted before they can be effectively used. Researchers at UCI have recently developed a paper-based microcapsule extraction technique that is quicker, cheaper, and less damaging than conventional methods.

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Robotic Plant Care Assistant

Researchers at the University of California, Davis have developed a robotic system can apply signaling to the crops and detect any important needs for the plant.

Improved Energy Harvesting for Current-Carrying Conductors

There are an estimated 130 million wooden poles that support overhead power lines in the US.  Extreme weather, aging, storms or sabotage can all lead to potential damage of these poles and power lines, which can leave large areas without basic necessities.  Due to this risk, it’s anticipated that power utility companies will deploy sensors and corresponding energy harvesters to better respond to potential damage of this critical electricity grid infrastructure. To address this anticipated mass deployment of sensors and harvesters, researchers at UC Berkeley have developed technology improvements to harvesting of electrical energy from energized conductors carrying alternating currents, such as those on overhead and underground power lines (as well as power-supplying conductors in offices and dwellings).  These enhanced harvesters would improve the economics of deploying sensors across a national power grid.  The Berkeley harvesters can readily provide enough power to supply wireless communication devices, energy storage batteries and capacitors, as well as sensors such as accelerometers, particulate matter measuring devices, and atmospheric sensors.

Precision Irrigation System Using Passive Mechanical Valves And Mobile Robots

Prolonged drought in California and the Southwest has both severely reduced water allocation to farmers, and substantially increased water prices. As the drought continues, so does the pressure to increase water use efficiency and streamline water delivery practices in agriculture. The systems currently in use are insufficiently precise to satisfy the demands of high value crops such as almonds and grapes, which often require watering regimes tailored to individual plants.UC Berkeley researchers have developed a low-cost system of mechanical valves and mobile robots that will address this issue. One or more valves can be installed per plant, and periodically adjusted by the robots based on sensor data. The system provides a fine-grained control of water flow to compensate for factors that vary across the planting region.

An Ultra-Sensitive Method for Detecting Molecules

To-date, plasmon detection methods have been utilized in the life sciences, electrochemistry, chemical vapor detection, and food safety. While passive surface plasmon resonators have lead to high-sensitivity detection in real time without further contaminating the environment with labels. Unfortunately, because these systems are passively excited, they are intrinsically limited by a loss of metal, which leads to decreased sensitivity. Researchers at the University of California, Berkeley have developed a novel method to detect distinct molecules in air under normal conditions to achieve sub-parts per billion detection limits, the lowest limit reported. This device can be used detecting a wide array of molecules including explosives or bio molecular diagnostics utilizing the first instance of active plasmon sensor, free of metal losses and operating deep below the diffraction limit for visible light.  This novel detection method has been shown to have superior performance than monitoring the wavelength shift, which is widely used in passive surface plasmon sensors. 

Identification Of Sites For Internal Insertions Into Cas9

The ability to add a protein domain of new function is a standard molecular biology technique, and usually the domain is fused to a protein terminus. The CRISPR-associated protein Cas9 already has widespread utility for genome engineering, yet adding protein domains would increase precision and specificity. Both protein termini of Cas9, however, are close to each other and in a small defined region, which limits the effectiveness of standard fusion approaches. Therefore, insertion sites within Cas9 that will not disrupt Cas9 function are needed.Researchers at UC Berkeley have identified over 150 such sites. In proof-of-concept experiments, a PDZ protein interaction domain has been intercalated and increased functionality without decreasing Cas9 nuclease activity. In further experiments, the internal insertion sites have been used to alter Cas9 activity in an allosteric manner, effectively creating tunable Cas9.

  • Go to Page: