Browse Category: Veterinary > Diagnostics

[Search within category]

Methods and Systems for Rapid Antimicrobial Susceptibility Tests

Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.

A Qtl On Eca 22 Is Associated With Performance In Seveal Horse Breeds

Researchers at the University of California, Davis have identified a genetic discovery associated with the physical conformation and gait performance in horses.

Nanophotonic Perovskite Scintillator For Time-Of-Flight Gamma-Ray Detection

Positron emission tomography (PET) scanners map the metabolic or biochemical function of tissues by detecting the gamma radiation released by the decay of radioactive tracers ingested by a patient. This technology is particularly useful for mapping tumors because one can devise tracers which tumor cells uptake preferentially. Current gamma radiation detectors are expensive and inefficient, requiring large integration times and radionuclide doses for meaningful image quality. Additionally, the spatial resolution of the resulting map is limited by detector latency, which for traditional technology is 200-500 picoseconds.To address these problems, researchers at UC Berkeley have developed a novel gamma radiation detector with much greater time resolution (potentially down to 10 picoseconds), and higher efficiency (nearly all gamma rays successfully detected). Additionally, these detectors use well-established nanotechnology manufacturing methods and can be produced an order of magnitude more cheaply than existing detectors. The high efficiency of these detectors allows amounts of radioactive tracer used to be decreased by an order of magnitude and spatial resolution to be increased by an order of magnitude when compared to traditional methods.

Systems For Pulse-Mode Interrogation Of Wireless Backscatter Communication Nodes

Measurement of electrical activity in nervous tissue has many applications in medicine, but the implantation of a large number of sensors is traditionally very risky and costly. Devices must be large due to their necessary complexity and power requirements, driving up the risk further and discouraging adoption. To address these problems, researchers at UC Berkeley have developed devices and methods to allow small, very simple and power-efficient sensors to transmit information by backscatter feedback. That is, a much more complex and powerful external interrogator sends an electromagnetic or ultrasound signal, which is modulated by the sensor nodes and reflected back to the interrogator. Machine learning algorithms are then able to map the reflected signals to nervous activity. The asymmetric nature of this process allows most of the complexity to be offloaded to the external interrogator, which is not subject to the same constraints as implanted devices. This allows for larger networks of nodes which can generate higher resolution data at lower risks and costs than existing devices.

Risk Assessment Tool for Bovine Respiratory Disease in Dairy Calves

Researchers at the University of California, Davis have developed a system to assess, estimate and devise a comprehensive control and prevention plan for bovine respiratory disease in pre-weaned dairy calves.

Metabolic Assessment to Diagnose Equine Neuroaxonal Dystrophy (eNAD)/ Equine Degenerative Myeloencephalopathy (EDM)

Researchers at the University of California, Davis have developed a protocol and assay to assess the rate of metabolism of vitamin E in horses that serves as a potential diagnostic test for equine neuroaxonal dystrophy (eNAD) and equine degenerative myeloencephalopathy (EDM).

Monoclonal Antibodies Specific to Canine PD-1 and PD-L1

Researchers at the University of California, Davis have developed monoclonal antibodies with multiple applications relevant to canine PD-1 and PD-L1.

Machine Learning Program that Diagnoses Hypoadrenocorticism in Dogs Using Standard Blood Test Results

Researchers at the University of California, Davis have developed a program based on machine learning algorithms to aid in diagnosing hypoadrenocorticism.

Applying a Machine Learning Algorithm to Canine Radiographs for Automated Detection of Left Atrial Enlargement

Researchers at the University of California, Davis have developed a method of detecting canine left atrial enlargement as an early sign of mitral valve disease by applying machine learning techniques to thoracic radiograph images.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF

The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation.  Current CRISPR Cas technologies are based on systems from cultured bacteria, leaving untapped the vast majority of organisms that have not been isolated.  There is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).     UC Berkeley researchers discovered a new type of Cas 12 protein.  Site-specific binding and/or cleavage of a target nucleic acid (e.g., genomic DNA, ds DNA, RNA, etc.) can occur at locations (e.g., target sequence of a target locus) determined by base-pairing complementarity between the Cas12 guide RNA (the guide sequence of the Cas12 guide RNA) and the target nucleic acid.  Similar to CRISPR Cas9, Cas12 enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.    

Therapy to improve survival in patients with end stage renal disease

Despite many recent improvements in dialysis treatment, End Stage Renal Disease (ESRD) patients on hemodialysis continue to experience an annual mortality rate of approximately 20%, a rate worse than many cancers. Researchers at UCI have identified an association between increased levels of endocannabinoid (EC) in ESRD patients’ serum and decreased risk of death thereby providing a potential therapy to enhance survival times for patients.

Diagnostic Marker for Chondrodystrophy and Intervertebral Disk Disease Susceptibility in Canines

Researchers at the University of California, Davis, have developed a diagnostic method to identify dogs that are at risk for chondrodystrophy and/or intervertebral disc disease.

Portable waterborne pathogen detector

The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.

Human Respiratory Disease Model Developed from Titi Monkey Adenovirus

Researchers at the University of California, Davis have cultured a titi monkey adenovirus (TMAdV,) and used the virus to develop a model of human respiratory disease.

Low Cost Wireless Spirometer Using Acoustic Modulation

The present invention relates to portable Spirometry system that uses sound to transmit pulmonary airflow information to a receiver.

Microfluidic Component Package

The present invention describes a component package that enables a microfluidic device to be fixed to a Printed Circuit Board (PCB) or other substrate, and embedded within a larger microfluidic system.

New label-free method for direct RNase activity detection in biological samples

Researchers at the University of California, Davis have developed a new and simple, label-free method to detect milligram levels of RNase activity in undiluted biological samples that is selective, accurate and scalable.

Mobile Molecular Diagnostics System

There is a growing interest in point-of-care testing (POCT) where testing is done at or near the site of patient care, since POCT has a short therapeutic turnaround time, decreased process steps where errors can occur and only a small sample volume is required to perform a test.    UC Berkeley researchers have developed a mobile molecular diagnostics system that leverages efficient and dependable blood sampling, automated sample preparation, rapid optical detection of multi-analyte nucleic acids and proteins, and user-friendly systems integration with wireless communication.  The system includes a hand-held automated device with an adaptive sample control module, an optical signal transduction module, and an interface to a smartphone making this a reliable and field-applicable system for point-of-care and on-demand diagnostics. 

Automated Semen Analysis Using Holographic Imaging

UCLA researchers in the department of electrical engineering have developed a compact and lightweight platform for conducting automated semen analysis using a lens-free on-chip microscope.

Fractal RF Coils for Use in High Field MRI (>3T) Resulting in High Resolution Images

Researchers at the University of California, Irvine have designed a fractal shaped RF coil for magnetic resonance (MR) image acquisition that effectively reduces interference commonly associated with coil loops (such as the birdcage coil) that are in close proximity. Limiting coil interference enables an increase in the flexibility of phased array design and reduces the need for additional system components to cancel out signal noise.

Novel Imaging Technique Combines Optical and MR Imaging Systems To Obtain High Resolution Optical Images

Researchers at the University of California, Irvine have developed a novel high resolution imaging technique, referred to as Photo-Magnetic Imaging (PMI), that combines the abilities of optical and magnetic resonance (MR) imaging systems. Images are created with PMI by heating tissue with a light (e.g. laser) and measuring the resulting temperature change with MR Thermometry. This change in temperature can then be related to a tissue’s absorption, scattering, and metabolic properties. PMI addresses the limitations of current optical imaging techniques by providing a repeatable, non-contact, high resolution optical image with increased quantitative accuracy. This technique can be used for a wide-range of applications including but not limited to imaging of small animals for research purposes. This technique may also be used in imaging the tissue and organs of a patient.

New Light Emission Detection Method Enables High Resolution Optical Imaging of Biological Tissue.

Researchers at the University of California, Irvine have developed a novel method for capturing cellular resolution images of biological tissue at depths of up to several millimeters. Conventional fluorescence detection methods utilize microscope objectives for emission light collection, a less effective approach that is only capable of imaging up to one millimeter deep.To improve upon this standard, the UC researchers minimized light losses by optimizing the system's excitation and detection optics. This new novel method increases the ability to capture cellular resolution images of biological tissues at depths 3x that of previously used methods. The improved method is capable of imaging up to 3 millimeters deep, while previous methods were only capable of depths up to 1 millimeter.

Novel Monoclonal Antibodies against Neospora Caninum

UCLA researchers have developed a large number of highly specific monoclonal antibodies against the intracellular parasite Neospora caninum that can be used for diagnostic or research purposes.

Large-Volume Centrifugal Microfluidic Device for Blood Plasma Separation

Researchers at the University of California, Irvine have developed a CD microfluidic device that is capable of blood plasma separation of 2 mL of undiluted blood samples. A technician would pipette into the CD device the blood sample for separation. The device is then rotated at high frequencies in order to separate the plasma from the blood. As the frequency of rotation for the CD device is decreased, a siphon valve is primed due to the low frequency of rotation; and the plasma is separated into a collection chamber.

  • Go to Page: