Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Veterinary > Diagnostics


[Search within category]

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Genetic Test for Equine Immune-Mediated Myositis

Researchers at the University of California, Davis and Michigan State University have developed a genetic test to diagnose immune-mediate myositis in American Quarter Horses and related horse breeds.

Diagnostic Marker for Chondrodystrophy and Intervertebral Disk Disease Susceptibility in Canines

Researchers at the University of California, Davis, have developed a diagnostic method to identify dogs that are at risk for chondrodystrophy and/or intervertebral disc disease.

Portable waterborne pathogen detector

The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Low Cost Wireless Spirometer Using Acoustic Modulation

The present invention relates to portable Spirometry system that uses sound to transmit pulmonary airflow information to a receiver.

Proteomic Chip for determining immune status and prognosis of HIV patients

Researchers at UCI have developed a multi-clade HIV-1 proteomic chip that helps with diagnosis of clade specific infection of HIV-1. Proteomic chip can determine the immune status and prognosis of HIV infected individuals.

Enhanced Cell/Bead Encapsulation Via Acoustic Focusing

The invention consists of a multi-channel, droplet-generating microfluidic device with a strategically placed feature. The feature vibrates in order to counteract particle-trapping micro-vortices formed in the device. Counteracting these vortices allows for single particle encapsulation in the droplets formed by the device and makes this technology a good candidate for use in single cell diagnostics and drug delivery systems.

Mobile Molecular Diagnostics System

There is a growing interest in point-of-care testing (POCT) where testing is done at or near the site of patient care, since POCT has a short therapeutic turnaround time, decreased process steps where errors can occur and only a small sample volume is required to perform a test.    UC Berkeley researchers have developed a mobile molecular diagnostics system that leverages efficient and dependable blood sampling, automated sample preparation, rapid optical detection of multi-analyte nucleic acids and proteins, and user-friendly systems integration with wireless communication.  The system includes a hand-held automated device with an adaptive sample control module, an optical signal transduction module, and an interface to a smartphone making this a reliable and field-applicable system for point-of-care and on-demand diagnostics. 

Automated Semen Analysis Using Holographic Imaging

UCLA researchers in the department of electrical engineering have developed a compact and lightweight platform for conducting automated semen analysis using a lens-free on-chip microscope.

Fractal RF Coils for Use in High Field MRI (>3T) Resulting in High Resolution Images

Researchers at the University of California, Irvine have designed a fractal shaped RF coil for magnetic resonance (MR) image acquisition that effectively reduces interference commonly associated with coil loops (such as the birdcage coil) that are in close proximity. Limiting coil interference enables an increase in the flexibility of phased array design and reduces the need for additional system components to cancel out signal noise.

Rapid Assay Including But Not Limited To Lateral Flow Assay For The Detection Of Specific Hormones In Ill Neonatal Foals And Foals With Maladjustment

The present invention provides impending ‘stall side’ diagnostics and for Neonatal Maladjustment Syndrome (Dummy Foals) and anticipated methods for treatment

Novel Imaging Technique Combines Optical and MR Imaging Systems To Obtain High Resolution Optical Images

Researchers at the University of California, Irvine have developed a novel high resolution imaging technique, referred to as Photo-Magnetic Imaging (PMI), that combines the abilities of optical and magnetic resonance (MR) imaging systems. Images are created with PMI by heating tissue with a light (e.g. laser) and measuring the resulting temperature change with MR Thermometry. This change in temperature can then be related to a tissue’s absorption, scattering, and metabolic properties. PMI addresses the limitations of current optical imaging techniques by providing a repeatable, non-contact, high resolution optical image with increased quantitative accuracy. This technique can be used for a wide-range of applications including but not limited to imaging of small animals for research purposes. This technique may also be used in imaging the tissue and organs of a patient.

New Light Emission Detection Method Enables High Resolution Optical Imaging of Biological Tissue.

Researchers at the University of California, Irvine have developed a novel method for capturing cellular resolution images of biological tissue at depths of up to several millimeters. Conventional fluorescence detection methods utilize microscope objectives for emission light collection, a less effective approach that is only capable of imaging up to one millimeter deep.To improve upon this standard, the UC researchers minimized light losses by optimizing the system's excitation and detection optics. This new novel method increases the ability to capture cellular resolution images of biological tissues at depths 3x that of previously used methods. The improved method is capable of imaging up to 3 millimeters deep, while previous methods were only capable of depths up to 1 millimeter.

Novel Monoclonal Antibodies against Neospora Caninum

UCLA researchers have developed a large number of highly specific monoclonal antibodies against the intracellular parasite Neospora caninum that can be used for diagnostic or research purposes.

Large-Volume Centrifugal Microfluidic Device for Blood Plasma Separation

Researchers at the University of California, Irvine have developed a CD microfluidic device that is capable of blood plasma separation of 2 mL of undiluted blood samples. A technician would pipette into the CD device the blood sample for separation. The device is then rotated at high frequencies in order to separate the plasma from the blood. As the frequency of rotation for the CD device is decreased, a siphon valve is primed due to the low frequency of rotation; and the plasma is separated into a collection chamber.

Carrier Tests for Point-Restriction Coat Color in the Domestic Cat

Carrier Tests for Point-Restriction and Albinism in the Domestic Cat

Tests for Polycystic Kidney Disease in Domestic Cats

DNA Mutation Tests for PKD in domestic cats.

Test for Hereditary Equine Regional Dermal Asthenia (HERDA)

Assay for an Informative SNP used to Identify Carriers of the HERDA Disease Allele ****U.S. PATENT NO. 7,608,400 ISSUED OCTOBER 27, 2009****

Genetic Test for Determining Blood Type in Domestic Cats

Identification of Mutations in the Gene CMAH that causes the Cat Blood Type B

  • Go to Page: