Browse Category: Transportation > Alternative Propulsion

[Search within category]

Power-Dense and Non-Synchronous Electric Motors

Many industries in the 21st century are aiming to decarbonize emissions from power generation and use. This has stimulated interest in new and efficient designs of electric motors to help society transition from combustion-based systems. An all electric power train with a high-power-density could be a suitable replacement for incumbent propulsion technologies such as aviation. The attention on high-power-density motors has researchers focused on motor topologies with low weight and high efficiency. Existing electric motor systems suffer from relatively low power densities owing to iron cores and copper/aluminum wire. The introduction of high-temperature superconducting (HTS) technology has helped to raise the current density of the motor’s wires. To date, however, HTS-based topologies have been synchronous designs with rotating windings that require expensive, heavy cooling system architecture.

Sinusoidal Surface Serrations On A Bio-Inspired Propeller

Currently in the United States, alone there are over 1.6 million drones used for leisure and professional purposes with those number expected to increase greatly by 2024. However, the increase in noise pollution associated with these drones may be detrimental to the environment. Drone associated noise pollution and disturbance may limit the adoption of drones in different applications. One possible solution is to reduce noise from the propellerthrough new propeller designs. UCB researchers have developed a propeller design that can be used in drone propellers that can increase the thrust, improve the power efficiency, and reduce the associated noise emissions in comparison to conventional propeller designs. By extending two-dimensional serrations to a three-dimensional geometry the researchers strengthened the flow distortion and provided more powerful control over the high-frequency noise band in a rotating propeller. 

Efficient UAV Flight Mechanism with Vertical Take-Off and Landing (VTOL) Capability

Researchers at the University of California, Davis have developed a new flight mechanism that offers vertical take-off and landing (VTOL) capability and cruising speeds comparable with fixed wing unmanned aerial vehicles (UAV).

Tri-Energy Source Hybrid Vehicle Powertrain

Researchers at the University of California, Davis have developed a tri-energy source (TES) hybrid vehicle powertrain consisting of three different propulsion systems including: (i) an internal combustion engine (ICE); (ii) an electric motor and battery and; (iii) a flywheel and continuously variable transmission (CVT).

A Low-Profile Flow Shear Sensing Unit

UCLA researchers have developed an accurate low-profile shear sensing unit that is viable for both gas and liquid flows.

Methods for Fabrication of Electric Propulsion Tips

The technology is a method for fabrication of silicon microfabricated emitter tips.This process has two-step etching process which utilizes field emission electric propulsion (FEEP) and indium propellant.

Resonance Assistance and Custom Transmission for Lever-Drive Wheelchair

The technology is a lever-drive wheelchair.With this device, users are able to drive a wheelchair or exercise using impaired arm. The device contains a custom transmission, flexible arm support, elastic members connected between lever and wheelchair frame, and a counterweight for assistance during use and does not contain actuators or powered components.

Fuel Cells Using Low-Temperature Conducting Materials

Preparation of nanometric oxides that exhibit enhanced protonic conductivity at low temperatures.

  • Go to Page: