Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Physical Measurement

Categories

[Search within category]

Pulsed-Coherent Electronic Front End for Detection and Ranging

Researchers in the UCLA Department of Electrical and Computer Engineering have developed a Light Detection and Ranging (LiDAR) device capable of high resolution, high acquisition measurements with minimized walk error and adjustable detection quality.

Real-time, Passive Non-Line-of-Sight Imaging with Thermal Camera by Exploiting Bidirectional Reflectance Distribution Function

UCLA researchers in the Department of Electrical and Computer Engineering have developed a Non-line-of-sight (NLOS) Imaging System using low cost thermal cameras that enable 3D recovery of NLOS heat source for imaging around corners.

A Method for Signal Characterization

UCLA researchers in the Department of Electrical and Computer Engineering have developed a method and apparatus to rapidly analyze optical and electrical signals at very high bandwidths while accommodating advanced signal modulation for lower cost and improved energy consumption.

Rapid Electrochemical Analytical Instrument

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a user-friendly analytical instrument that measures electrochemical impedance at rates many times faster than currently available devices and with comparable accuracy.

3D Printed Normal Force Sensor

UCLA researchers in the Department of Bioengineering have developed a novel 3D printing method that produces customizable normal force sensors for robotic surgical applications at high speed and low cost.

Reacting Molecules and Colloids Electrophoretically

Researchers in UCLA's Department of Chemistry and Biochemistry have harnessed gel electrophoresis in order to direct and program controlled collisional reactions between pulse-like bands of molecules and/or colloidal reagent species.

Flexible Microfluidic Sensors for Curved Surfaces

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed flexible tactile sensors for curved surfaces that are robust against fatigue and suitable for robotic applications.

Dual-Shell Fused Quartz Resonators and Method of Fabrication

UCI researchers developed a sturdy architecture and straightforward fabrication procedure for the core sensing element in microscale gyroscopes for timing and inertial navigation applications.

Method and Apparatus for Movement Therapy Gaming System

Rehabilitation therapy, while an important tool for the long term recovery of patients affected by brain injury or disease, is expensive and requires one-on-one attention from a certified healthcare professional. UCI researchers have developed a computer-based system that provides arm movement therapy for patients. The system allows patients to independently practice hand and arm movements, improving therapeutic outcomes, while reducing hospital visits and cost for both patients and healthcare providers.

Array Atomic Force Microscopy Enabling Simultaneous Multi-point and Multi-modal Nanoscale Analyses

Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale physical and biological systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. However, conventional AFMs only permit sequential single-point analysis. Widespread adoption of array AFMs for simultaneous multi-point study is still challenging due to the intrinsic limitations of existing technological approaches.

High-Speed Inspection or Railroad Track Using Passive Acoustics

The number one cause of train derailments globally are unidentified track defects which accumulate over time under the heavy loads and weathering to which rail is exposed. For the last 100 years rail inspection has sought to identify these structural defects before they can pose a serious threat to regular rail traffic. Unfortunately, rail inspection has required specialized low-speed testing cars which can only operate at less than 25% the normal speed of a train. These inspection cars must coordinate their work around planned outages of the rail line, impacting normal rail traffic. Due to this inconvenience, rail defects are typically repaired in real-time, as identified, vs. being prioritized as to potential seriousness and repaired in order of likelihood to cause a future accident.

Pressure Sensitive Fabrics

Piezoelectric sensors have long existed to monitor applied pressures between two objects. In large applications with malleable substrates or where low cost is key, individual piezoelectric sensors are not practical. A variety of applications exist where monitoring the pressure being applied to a soft surface would providing meaningful insights into the system or subject under observation. For instance, in a long-term care setting where patients need to be monitored for pressure ulcers, a bedding material that could sense the pressure points between a person’s body and the mattress could alert care givers that an adjustment in body position is warranted. Likewise, in a sports training application, a pressure sensitive boxing ring canvas could track a boxer’s footwork, or punching power and hand speed if applied to the inside of a punching bag.   Pressure sensitive soft toys could also benefit from feedback that might differ when a child scratches behind their stuffed animal’s ears vs. rubbing its belly.  To achieve discrete sensing in these applications, a low cost bulk sensing system is needed.

Microfluidic Device: Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels

Microfluidic devices have long been touted as a powerful analytical tool with which to characterize a wide range of analytes, including particles, and cells. Despite the apparent convenience of microfluidic technologies for applications in healthcare, such devices often rely on capital-intensive optics and other peripheral equipment that limit throughput, perhaps because the majority of microfluidic devices operate using optics-based principles, which typically require high-speed or sensitive cameras, sophisticated confocal microscopes, vibration isolation tables, and laser excitation systems.

SYSTEM AND METHOD TO OBTAIN HYPERSPECTRAL IMAGING IN HIGHLY SCATTERING MEDIA BY THE SPECTRAL PHASOR APPROACH

Hyperspectral imaging is a technique combining imaging and spectroscopy resulting in images with extraordinary precision and detail. Current approaches to capture hyperspectral images are costly and time-consuming. The proposed technique makes use of inexpensive filters and reduces the number of required exposures, thereby improving the efficiency and practicability of obtaining hyperspectral images.

Cavity Atom Interferometer For Noise-Suppressed Inertial Sensing

The sensitivity of mobile atom interferometers for gravimetry, gradiometry and inertial sensing has been limited by a noise floor due to ground vibrations, as well as available free-fall space.    UC Berkeley researchers have developed an interferometer geometry that addresses both problems within an optical cavity. The utility of such a device lies primarily in its application as a mobile sensor, particularly for situations in the absence of a GPS signal (such as in deep-sea submarines, or in the event of a GPS system failure).  Similarly, sensing using gravitational signals has wide applicability. The configuration of this device accumulates an acceleration phase sensitive to low-frequency accelerations (i.e., gravity) while demonstrating an immunity to accelerations at higher frequencies than the held times (i.e., vibrations).

Body Voltage Sensing Based Short Pulse Reading Circuit For STT-RAM

UCLA researchers in the Department of Electrical & Computer Engineering have invented a novel circuit design that performs high speed and reliable data reading operations for resistive device-based memory applications.

Infrared Detectors And Heat Recycling Cells Based On Metallo-Graphene Nanocomposites

UCLA researchers in the Department of Electrical Engineering have developed a high-responsivity photodetector that utilizes metallo-graphene nanocomposites for superior detection of infrared wavelengths.

A 3D Microfluidic Actuation and Sensing Wearable Technology for In-Situ Biofluid Processing and Analysis

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel wearable biosensor capable of measuring biomarkers in real time through biofluids like sweat.

Method for Simultaneously Measuring In- and Out-of-Plane Surface Magnetic Properties of Thin Films

Researchers at the University of California, Davis have developed a method for measuring in-plane and out-of-plane surface magnetic properties of thin films.

Quality interference from living digital twins in IoT-enabled manufacturing systems

Researchers at UCI have developed a non-intrusive method for building a virtual replica of manufacturing machine, which allows for accurate diagnostics of the state of the system. This provides manufacturers with real-time information on quality control and immediately identifies any malfunctions in the system.

Quantitative Deformability Cytometry: Rapid, Calibrated Measurements Of Cell Mechanical Properties

UCLA researchers in the Department of Integrative Biology and Physiology have developed a novel microfluidic device that enables rapid measurement of cell mechanical properties.

Automated Immersion Mode Ice Spectroscopy

Ice nucleating particles (INPs) suspended in the Earth’s atmosphere influence cloud properties and can affect the overall precipitation efficiency and predictability of cloud systems worldwide. INPs induce freezing of cloud droplets at temperatures above their normal freezing-point (~-38 C), and at a relative humidity (RH) below the normal freezing RH of aqueous solution droplets at lower temperatures. These INP induced variabilities influence cloud lifetime, phase, as well as cloud optical and microphysical properties. Developing a relational model of INPs in global climate models has proven challenging as existing instrumentation systems either require too much air volume (in real-time flow instruments) or exhibit too much temperature variability (in off-line frozen assay based instruments).  Thus, there is a real urgency to address this unmet need.

In-Situ TEM Holder With STM Probe And Optical Fiber

Researchers at UCI have developed a fully integrated sample mount for the simultaneous high-resolution imaging and electronic and optical characterization of thin film devices.

  • Go to Page: