Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Physical Measurement

Categories

[Search within category]

Reacting Molecules and Colloids Electrophoretically

Researchers in UCLA's Department of Chemistry and Biochemistry have harnessed gel electrophoresis in order to direct and program controlled collisional reactions between pulse-like bands of molecules and/or colloidal reagent species.

Flexible Microfluidic Sensors for Curved Surfaces

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed flexible tactile sensors for curved surfaces that are robust against fatigue and suitable for robotic applications.

Dual-Shell Fused Quartz Resonators and Method of Fabrication

UCI researchers developed a sturdy architecture and straightforward fabrication procedure for the core sensing element in microscale gyroscopes for timing and inertial navigation applications.

Method and Apparatus for Movement Therapy Gaming System

Rehabilitation therapy, while an important tool for the long term recovery of patients affected by brain injury or disease, is expensive and requires one-on-one attention from a certified healthcare professional. UCI researchers have developed a computer-based system that provides arm movement therapy for patients. The system allows patients to independently practice hand and arm movements, improving therapeutic outcomes, while reducing hospital visits and cost for both patients and healthcare providers.

Array Atomic Force Microscopy Enabling Simultaneous Multi-point and Multi-modal Nanoscale Analyses

Nanoscale multipoint structure-function analysis is essential for deciphering the complexity of multiscale physical and biological systems. Atomic force microscopy (AFM) allows nanoscale structure-function imaging in various operating environments and can be integrated seamlessly with disparate probe-based sensing and manipulation technologies. However, conventional AFMs only permit sequential single-point analysis. Widespread adoption of array AFMs for simultaneous multi-point study is still challenging due to the intrinsic limitations of existing technological approaches.

High-Speed Inspection or Railroad Track Using Passive Acoustics

The number one cause of train derailments globally are unidentified track defects which accumulate over time under the heavy loads and weathering to which rail is exposed. For the last 100 years rail inspection has sought to identify these structural defects before they can pose a serious threat to regular rail traffic. Unfortunately, rail inspection has required specialized low-speed testing cars which can only operate at less than 25% the normal speed of a train. These inspection cars must coordinate their work around planned outages of the rail line, impacting normal rail traffic. Due to this inconvenience, rail defects are typically repaired in real-time, as identified, vs. being prioritized as to potential seriousness and repaired in order of likelihood to cause a future accident.

Pressure Sensitive Fabrics

Piezoelectric sensors have long existed to monitor applied pressures between two objects. In large applications with malleable substrates or where low cost is key, individual piezoelectric sensors are not practical. A variety of applications exist where monitoring the pressure being applied to a soft surface would providing meaningful insights into the system or subject under observation. For instance, in a long-term care setting where patients need to be monitored for pressure ulcers, a bedding material that could sense the pressure points between a person’s body and the mattress could alert care givers that an adjustment in body position is warranted. Likewise, in a sports training application, a pressure sensitive boxing ring canvas could track a boxer’s footwork, or punching power and hand speed if applied to the inside of a punching bag.   Pressure sensitive soft toys could also benefit from feedback that might differ when a child scratches behind their stuffed animal’s ears vs. rubbing its belly.  To achieve discrete sensing in these applications, a low cost bulk sensing system is needed.

Microfluidic Device: Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels

Microfluidic devices have long been touted as a powerful analytical tool with which to characterize a wide range of analytes, including particles, and cells. Despite the apparent convenience of microfluidic technologies for applications in healthcare, such devices often rely on capital-intensive optics and other peripheral equipment that limit throughput, perhaps because the majority of microfluidic devices operate using optics-based principles, which typically require high-speed or sensitive cameras, sophisticated confocal microscopes, vibration isolation tables, and laser excitation systems.

An On-Bed Monitoring System For Rehabilitative Exercises

UCLA researchers have developed a novel method for monitoring rehabilitative exercises using a bed sheet with high-density pressure sensors.

SYSTEM AND METHOD TO OBTAIN HYPERSPECTRAL IMAGING IN HIGHLY SCATTERING MEDIA BY THE SPECTRAL PHASOR APPROACH

Hyperspectral imaging is a technique combining imaging and spectroscopy resulting in images with extraordinary precision and detail. Current approaches to capture hyperspectral images are costly and time-consuming. The proposed technique makes use of inexpensive filters and reduces the number of required exposures, thereby improving the efficiency and practicability of obtaining hyperspectral images.

Body Voltage Sensing Based Short Pulse Reading Circuit For STT-RAM

UCLA researchers in the Department of Electrical & Computer Engineering have invented a novel circuit design that performs high speed and reliable data reading operations for resistive device-based memory applications.

Infrared Detectors And Heat Recycling Cells Based On Metallo-Graphene Nanocomposites

UCLA researchers in the Department of Electrical Engineering have developed a high-responsivity photodetector that utilizes metallo-graphene nanocomposites for superior detection of infrared wavelengths.

A 3D Microfluidic Actuation and Sensing Wearable Technology for In-Situ Biofluid Processing and Analysis

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel wearable biosensor capable of measuring biomarkers in real time through biofluids like sweat.

Method for Simultaneously Measuring In- and Out-of-Plane Surface Magnetic Properties of Thin Films

Researchers at the University of California, Davis have developed a method for measuring in-plane and out-of-plane surface magnetic properties of thin films.

Quality interference from living digital twins in IoT-enabled manufacturing systems

Researchers at UCI have developed a non-intrusive method for building a virtual replica of manufacturing machine, which allows for accurate diagnostics of the state of the system. This provides manufacturers with real-time information on quality control and immediately identifies any malfunctions in the system.

Quantitative Deformability Cytometry: Rapid, Calibrated Measurements Of Cell Mechanical Properties

UCLA researchers in the Department of Integrative Biology and Physiology have developed a novel microfluidic device that enables rapid measurement of cell mechanical properties.

Automated Immersion Mode Ice Spectroscopy

Ice nucleating particles (INPs) suspended in the Earth’s atmosphere influence cloud properties and can affect the overall precipitation efficiency and predictability of cloud systems worldwide. INPs induce freezing of cloud droplets at temperatures above their normal freezing-point (~-38 C), and at a relative humidity (RH) below the normal freezing RH of aqueous solution droplets at lower temperatures. These INP induced variabilities influence cloud lifetime, phase, as well as cloud optical and microphysical properties. Developing a relational model of INPs in global climate models has proven challenging as existing instrumentation systems either require too much air volume (in real-time flow instruments) or exhibit too much temperature variability (in off-line frozen assay based instruments).  Thus, there is a real urgency to address this unmet need.

In-Situ TEM Holder With STM Probe And Optical Fiber

Researchers at UCI have developed a fully integrated sample mount for the simultaneous high-resolution imaging and electronic and optical characterization of thin film devices.

Development of a Fully Integrated Chip-Scale Optical Fourier Transform Spectrometer with Channel Dispersion

Optical spectroscopy excels at chemical identification and is ubiquitous in the sciences as a highly specific and noninvasive probe of molecular structure. The field is moving toward the integration of miniaturized optical spectrometers into mobile platforms which will have unprecedented impact on applications ranging from unmanned aerial vehicles (UAVs) to mobile phones. To address this demand, silicon photonics stands out as platform capable of delivering compact and cost-effective devices and systems. The Fourier transform spectrometer (FTS) is largely used in free-space spectroscopy, where its high signal throughput has proven a boon to overcoming the difficulties of otherwise overwhelming detector noise. Its implementation in silicon photonics manufacturing will contribute to bringing broadband operation and fine resolution to the chip scale enabling such attributes as compactness, power efficiency, real time operation and low cost.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Respiratory Monitor For Asthma And Other Pulmonary Conditions

A patch sensor that is able to continuously monitor breathing rate and volume to diagnose pulmonary function and possibly predict and possibly prevent fatal asthma attacks.

Pressure Based Mechanical Feedback to Safely Insert Catheters

A pressure sensing device that provides feedback during the insertion of a ureteral access sheath to prevent unwanted damage to the wall of the ureter.

Method Of Localizing Breakdown In High Power Rf Network

Researchers in the Department of Physics have developed a method for detecting localized electrical breakdowns in high power RF networks.

A New and Cost-Effective Technology to Produce Hybrid-Glass/Optical Bubble Probes

The ability to accurately quantify gas volumes in liquid flows has important applications in environmental science and industry. For example, environmental processes that significantly contribute to changes in earth’s climate, such as methane seeps from the sea floor and the exchange of gases between the ocean and atmosphere at the sea surface, demand precise sensors that are small and sensitive enough to measure the ratio of liquids and gases in these bubbly mixtures. These measurements also play a critical role in the operational efficiency of a wide variety of different engineering processes. Applications include, the monitoring the optimal amount of bubbled oxygen in the treatment of waste water and sewage, and the oil and gas industry, especially in undersea oil pipelines in the Gulf of Mexico alone, have spent billions of dollars annually on added refinement techniques to remove seawater that could be preventable if sensors were able to measure the ratio of crude oil, seawater and gas as the mixture is pumped through pipelines. These challenges exist in both research and industry because the current manufacturing process for making the needed gas/liquid probes have significant cost constraints. Clearly, there is a need for a new and cost-effective technology to produce these probes.

  • Go to Page: