Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Optics and Photonics > All Optics and Photonics


[Search within category]

Carbon Nanotube based Variable Frequency Patch-Antenna

Researchers at UCI have developed a patch antenna constructed from carbon nanotubes, whose transmission frequency can be tuned entirely electronically. Additionally, the antenna can be made operable in the microwave to visible frequency regime by simply varying the device dimensions and composition.

Ultrasensitive Photodetectors And Method For Making The Same

Photodetectors for infrared light suffer from low performance and high cost which hampers commercial applications. The researchers have engineered a method to boost the performance of any current photodetectors, especially within the infrared region, using quantum dots.   The researchers have demonstrated world record performance for sensing and detection.

Mapping Ciliary Activity Using Phase Resolved Spectrally Encoded Interferometric Microscopy

Researchers at UCI have developed an imaging technique that can monitor and measure small mobile structures called cilia in our airways and in the oviduct. This invention will serve as a stepping stone for study of respiratory diseases, oviduct ciliary colonoscopy and future clinical translations.

Polarization-Sensitive Optical Coherence Tomography Using a Polarization-Insensitive Detector

A polarization-sensitive optical coherence tomography (PS-OCT) is a common approach to non-invasively imaging in biomedical applications. The inventors have come up with a new way of creating a PS-OCT that is cheaper and simpler.

Integration And Mass Transfer Of Microleds

Brief description not available

Novel Reflective Microscope Objective Lens For All Colors

The researchers at the University of California, Irvine (UCI) have developed a microscopic lens, made entirely of reflective curved surface, where all the light wavelengths are focused at the same time for better resolution and larger field view of the image.

CMOS-Compatible Single-Layer Waveguide Display for Augmented And Virtual Reality

UCLA researchers in the Department of Electrical and Computer Engineering have developed a single-layer diffractive optical element with glass waveguide that is cheap and easy to manufacture with enhanced light filtering efficacy.

A Phase-Changing Polymer Film for Broadband Smart Windows Applications

UCLA researchers in the Department of Materials Science and Engineering have developed an energy efficient smart window coating with wide light bandwidth and long cycle lifetimes.

High Resolution Laser Speckle Imaging of Blood Flow

Prof. Guillermo Aguilar and his colleagues from the University of California, Riverside have developed a new approach to laser speckle imaging, called Laser Speckle Optical Flow Imaging (LSOFI) to be used for autonomous blood vessel detection and as a qualitative tool for blood flow visualization. LSOFI works by capturing the speckle displacement caused by different physical behavior and use the data to create a mapped image. It has been shown that LSOFI has many advantages over LSCI methods both in temporal and spatial resolution. Namely, LSOFI can be used to produce higher resolution images compared with the LSCI method using less frames. Combining this technology with Graphics Processing Unit (GPU) computation increases the speed of LSOFI, so GPU enabled LSOFI shows potential to create a fast and fully functional quasi-real time blood flow imaging system.  Fig 1: Comparison of blood flow imaging techniques applied to the raw image. The shown results are for Laser Speckle Optical Flow Imaging (LSOFI) using the Farneback Optical Flow algorithm, traditional Laser Speckle Imaging (LSI), and Temporal Frame Averaging (sLASCA).  

Enhanced Block Copolymer Self-Assembly

Brief description not available

Optical Frequency Stabilized Phase Locked Loop

Brief description not available

Curved Holographic Integrated Grating Lenses for Augmented and Virtual Reality

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel holographic grating design that achieves high-resolution, high-performance and high-efficiency display in augmented and virtual reality.

Development of a CMOS-Compatible, Nano-photonic, Laser

Researchers at the University of California, Davis have developed a new class of lasers and amplifiers that uses a CMOS-compatible electronics platform - and can also be applied to nano-amplifiers and nano-lasers applications.

Homogeneous Freestanding Luminescent Perovskite Organogel with Superior Water Stability

UCLA researchers in the Department of Materials Science and Engineering have developed a perovskite-embedded organogel with superior water stability and versatile design and mechanical properties.

Real-time, Passive Non-Line-of-Sight Imaging with Thermal Camera by Exploiting Bidirectional Reflectance Distribution Function

UCLA researchers in the Department of Electrical and Computer Engineering have developed a Non-line-of-sight (NLOS) Imaging System using low cost thermal cameras that enable 3D recovery of NLOS heat source for imaging around corners.

  • Go to Page: