Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > NanoBio

Categories

[Search within category]

Foliar Formulation to Protect Plants from Abiotic Stress

Prof. Juan Pablo Giraldo and his colleagues from the University of California, Riverside have developed a foliar formulation for increasing crop protection and photosynthetic performance when crops are under light, heat, and salinity stress. This is achieved by applying a nanomaterial (poly (acrylic acid) nanoceria, PNC) that interacts with plant chloroplasts to reduce abiotic stress. The nanoparticle formulation uses a novel, scalable and biocompatible approach to protect plant seeds, seedlings, and mature plants from stress.  The emerging field of nano-enabled agriculture has the potential to create crops that are protected from climate change induced stresses and have enhanced photosynthesis.   Fig 1: a, Nanoceria (PNC) increases photosynthesis and biomass in Arabidopsis plants under stress. No nanoparticles (NNP) are shown as control. b, Substantial damage to Arabidopsis plants exposed to excess light was mitigated by PNC.  

Ultrastable Nanoemulsions In Disordered And Ordered States

Researchers in the Department of Chemistry and Biochemistry at UCLA have developed a method for the production of crystalline, iridescent emulsions stable to repeated dilutions.

Zinc Nanocomposites And Stents For Functional Applications

UCLA researchers in the Department of Mechanical Engineering have developed a method to manufacture zinc-based metal matrix nanocomposites (MMNCs) for functional applications, such as stents.

Methods To Modulate Size, Malleability, And Biodistribution Of Cell-Based Therapeutics

While some cell therapies have experienced success, many current cell therapies fall short in that enough cells do not reach the target tissue and/or the cells are incapable of producing clinically relevant thresholds of desired products sufficient to impact the disease state. Consequently, there is a major fundamental need to genetically engineer therapeutic cells to be more effective and robust using integrating viruses and powerful gene editing technologies like CRISPR, which can target ten to hundreds of genes simultaneously. However, this is highly problematic because the process of genetic engineering introduces dangerous unwanted mutations into the genome that can lead to cancer and other life-threatening diseases, especially if such cells permanently engraft into the body or fuse with host cells, which is common with stem cells. Therefore, the FDA does not readily permit the introduction of new genetic material or the extensive alteration of endogenous genes in cell-based therapies with the exception of CAR-T cells. For this reason, there is a major underlying need in the cell therapy sector to genetically enhance therapeutic cells to express gene products encoding biologics and then render them safe prior to clinical use.

Bioengineered Let-7c Therapy for HCC Treatment

Researchers at the University of California, Davis have developed a bioengineered, RNA-based treatment for advanced liver cancer and hepatocellular carcinoma (HCC).

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

Reacting Molecules and Colloids Electrophoretically

Researchers in UCLA's Department of Chemistry and Biochemistry have harnessed gel electrophoresis in order to direct and program controlled collisional reactions between pulse-like bands of molecules and/or colloidal reagent species.

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

New Classes Of Cage And Polyhedron And New Classes Of Nanotube And Nanotube With Planar Faces

UCLA researchers have developed a novel algorithm that can be used to design unique self-assembled molecules and nanostructures.

Capture And Stimulated Release Of Circulating Tumor Cells On Polymer Grafted Silicon Nanostructures

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel capture system of circulating tumor cells for the early detection of metastatic cancer.

Single Circulating Tumor Cell Isolation Using Laser Microdissection And A Polymer Enrichment Assay

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel matrix polymer capture system of circulating tumor cells that preserves biomolecular integrity through laser microdissection for the early detection of metastatic cancer.

Generic Method for Controlled Assembly of Molecules

Researchers at the University of California, Davis, in collaboration with researchers at IBM, have developed a widely applicable method to assemble molecules regardless of their intrinsic self-assembly properties.

Process For Reducing Sizes Of Emulsion Droplets

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of reducing sizes of droplets in multiple emulsion systems.

Nanoparticles and Imaging Methods for MRI-Guided Stimuli-Responsive Theranostics

UCLA researchers from the Department of Medicine have developed novel nanoparticle and imaging methods for the MRI-guided targeted delivery of therapeutic agents.

Preparation Of Functionalized Polypeptides, Peptides, And Proteins By Alkylation Of Thioether Groups

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering Department, have developed new methods for adding different functional groups on polypeptides.  The UCLA researchers have used this method to create a platform to create and modify nanoscale vesicles and hydrogels for use in nanoscale drug delivery particles, injectable drug depots, imaging and detection, industrial biomaterials, and wound management.

Hydrogel For Endogenous Neuronal Progenitor Cells (NPC) Recruitment

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a novel hydrogel that aids in neuronal regeneration post stroke or disease.

Amphiphilic Derivatives Of Thioether Containing Block Copolypeptides

UCLA researchers in the Department of Bioengineering have developed a new method to generate amphiphilic block copolypeptides.

A 3D Microfluidic Actuation and Sensing Wearable Technology for In-Situ Biofluid Processing and Analysis

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel wearable biosensor capable of measuring biomarkers in real time through biofluids like sweat.

Facile Synthesis and Processing of Polymer Aerogels or Ambigels for Thermal Insulating Applications

Researchers at the UCLA Department of Mechanical & Aerospace Engineering have developed novel processing methods for polymer aerogels for thermal insulation and low thermal conductivity applications.

Nanoparticulate Mineralized Collagen Glycosaminoglycan Scaffold With An Anti-Resorption Factor

Researchers in the Division of Plastic and Reconstructive Surgery at the UCLA David Geffen School of Medicine and the Institute of Genomic Biology at the University of Illinois Urbana Champaign (UIUC) have developed novel methods to incorporate anti-resorption factor into nanoparticulate mineralized collagen glycosaminoglycan scaffold to maximize bone regeneration.

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

Label-Free Digital Bright Field Analysis of DNA Amplification

UCLA researchers in the department of Bioengineering have developed a novel method for quantitative analysis of DNA amplification products.

  • Go to Page: