Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > NanoBio


[Search within category]

DNA-based, Read-Only Memory (ROM) for Data Storage Applications

Researchers at the University of California, Davis have collaborated with colleagues at the University of Washington and Emory University to develop a DNA-based, memory and data storage technology that integrates seamlessly with semiconductor-based technologies and conventional electronic devices.

Nanopore Sensor to Characterize Nano and Microscale Particles and Cells

Researchers at the University of California, Riverside can discriminate between mixed populations of cells and particles in solution using pressure to displace objects across a nanopore multiple times.  Ionic current flow through the nanopore indicates the pressure required to translocate the object in the pore, which correlates to the object’s mass and volume.  Key to these results is that a nanopore sensor allows pressure oscillations to capture and release repeatedly the same object to learn about its inertia and morphology.  Such data can provide details about the size and shape of analytes, their morphologies and structural constraints, or even pathological conditions of living cells. Fig. 1 Nanopore sensing of differently sized cells in a mixed bacterial culture.  

Bioengineered Wnt5a Therapeutics For Advanced Cancers

Researchers at the University of California, Davis have developed RNA-based therapeutics to treat Wnt5A-expressing cancers, including treatment-resistant prostate cancer.

SARS-CoV-2 Detection by Carbon Nanotube-Based Nanosensors

The inventors have developed a real-time optical nanosensor for detection of active SARS-CoV-2 infection, which includes a modular synthesis scheme that is amenable to detection of other viral infections. The nanosensor is constructed from near-infrared fluorescent single-walled carbon nanotube (SWCNT) substrates functionalized with biomolecules that have high binding affinity to viral proteins and viral genomic material. Virus binding to the nanosensor instantaneously changes the SWCNT fluorescence. This fluorescent readout serves as the optical signal that coronavirus is present in the clinical sample. The near-infrared fluorescence signal is detectable in biological samples, offering the prospect of detecting active SARS-CoV-2 in unprocessed, crude biofluid samples from individuals with readouts provided in tens of minutes. These SWCNT-based nanosensors are adaptable to point-of-care diagnostic devices to enable accessible, rapid testing of active SARS-CoV-2 infection. Furthermore, the reagents and detection devices would be sourced from different supply chains than existing tests and provide orthogonal advantages to such tests.

Foliar Formulation to Protect Plants from Abiotic Stress

Prof. Juan Pablo Giraldo and his colleagues from the University of California, Riverside have developed a foliar formulation for increasing crop protection and photosynthetic performance when crops are under light, heat, and salinity stress. This is achieved by applying a nanomaterial (poly (acrylic acid) nanoceria, PNC) that interacts with plant chloroplasts to reduce abiotic stress. The nanoparticle formulation uses a novel, scalable and biocompatible approach to protect plant seeds, seedlings, and mature plants from stress.  The emerging field of nano-enabled agriculture has the potential to create crops that are protected from climate change induced stresses and have enhanced photosynthesis.   Fig 1: a, Nanoceria (PNC) increases photosynthesis and biomass in Arabidopsis plants under stress. No nanoparticles (NNP) are shown as control. b, Substantial damage to Arabidopsis plants exposed to excess light was mitigated by PNC.  

Ultrastable Nanoemulsions In Disordered And Ordered States

Researchers in the Department of Chemistry and Biochemistry at UCLA have developed a method for the production of crystalline, iridescent emulsions stable to repeated dilutions.

Zinc Nanocomposites And Stents For Functional Applications

UCLA researchers in the Department of Mechanical Engineering have developed a method to manufacture zinc-based metal matrix nanocomposites (MMNCs) for functional applications, such as stents.

Methods To Modulate Size, Malleability, And Biodistribution Of Cell-Based Therapeutics

While some cell therapies have experienced success, many current cell therapies fall short in that enough cells do not reach the target tissue and/or the cells are incapable of producing clinically relevant thresholds of desired products sufficient to impact the disease state. Consequently, there is a major fundamental need to genetically engineer therapeutic cells to be more effective and robust using integrating viruses and powerful gene editing technologies like CRISPR, which can target ten to hundreds of genes simultaneously. However, this is highly problematic because the process of genetic engineering introduces dangerous unwanted mutations into the genome that can lead to cancer and other life-threatening diseases, especially if such cells permanently engraft into the body or fuse with host cells, which is common with stem cells. Therefore, the FDA does not readily permit the introduction of new genetic material or the extensive alteration of endogenous genes in cell-based therapies with the exception of CAR-T cells. For this reason, there is a major underlying need in the cell therapy sector to genetically enhance therapeutic cells to express gene products encoding biologics and then render them safe prior to clinical use.

Bioengineered Let-7c Therapy for HCC Treatment

Researchers at the University of California, Davis have developed a bioengineered, RNA-based treatment for advanced liver cancer and hepatocellular carcinoma (HCC).

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Smart Dialysis Catheter

UCLA researchers in the Department of Cardiology at UCLA’s David Geffen School of Medicine have developed a smart dialysis catheter that can measure different patient vitals in real-time to prevent hospitalizations due to renal failure.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

New Classes Of Cage And Polyhedron And New Classes Of Nanotube And Nanotube With Planar Faces

UCLA researchers have developed a novel algorithm that can be used to design unique self-assembled molecules and nanostructures.

Capture And Stimulated Release Of Circulating Tumor Cells On Polymer Grafted Silicon Nanostructures

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel capture system of circulating tumor cells for the early detection of metastatic cancer.

Single Circulating Tumor Cell Isolation Using Laser Microdissection And A Polymer Enrichment Assay

UCLA researchers in the department of Molecular and Medical Pharmacology have developed a novel matrix polymer capture system of circulating tumor cells that preserves biomolecular integrity through laser microdissection for the early detection of metastatic cancer.

Generic Method for Controlled Assembly of Molecules

Researchers at the University of California, Davis, in collaboration with researchers at IBM, have developed a widely applicable method to assemble molecules regardless of their intrinsic self-assembly properties.

Process For Reducing Sizes Of Emulsion Droplets

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of reducing sizes of droplets in multiple emulsion systems.

Nanoparticles and Imaging Methods for MRI-Guided Stimuli-Responsive Theranostics

UCLA researchers from the Department of Medicine have developed novel nanoparticle and imaging methods for the MRI-guided targeted delivery of therapeutic agents.

Preparation Of Functionalized Polypeptides, Peptides, And Proteins By Alkylation Of Thioether Groups

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering Department, have developed new methods for adding different functional groups on polypeptides.  The UCLA researchers have used this method to create a platform to create and modify nanoscale vesicles and hydrogels for use in nanoscale drug delivery particles, injectable drug depots, imaging and detection, industrial biomaterials, and wound management.

Hydrogel For Endogenous Neuronal Progenitor Cells (NPC) Recruitment

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a novel hydrogel that aids in neuronal regeneration post stroke or disease.

Amphiphilic Derivatives Of Thioether Containing Block Copolypeptides

UCLA researchers in the Department of Bioengineering have developed a new method to generate amphiphilic block copolypeptides.

A 3D Microfluidic Actuation and Sensing Wearable Technology for In-Situ Biofluid Processing and Analysis

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel wearable biosensor capable of measuring biomarkers in real time through biofluids like sweat.

Nanoparticulate Mineralized Collagen Glycosaminoglycan Scaffold With An Anti-Resorption Factor

Researchers in the Division of Plastic and Reconstructive Surgery at the UCLA David Geffen School of Medicine and the Institute of Genomic Biology at the University of Illinois Urbana Champaign (UIUC) have developed novel methods to incorporate anti-resorption factor into nanoparticulate mineralized collagen glycosaminoglycan scaffold to maximize bone regeneration.

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

  • Go to Page: