Please login to create your UC TechAlerts.
Request a new password for
Required
Inverse Design and Fabrication of Controlled Release Structures
Researchers at the University of California, Davis have developed an algorithm for designing and identifying complex structures having custom release profiles for controlled drug delivery.
A General Magnetic Assembly Approach To Chiral Superstructures At All Scales
Brief description not available
High-Precision Chemical Quantum Sensing In Flowing Monodisperse Microdroplets
Quantum sensing is rapidly reshaping our ability to discern chemical processes with high sensitivity and spatial resolution. Many quantum sensors are based on nitrogen-vacancy (NV) centers in diamond, with nanodiamonds (NDs) providing a promising approach to chemical quantum sensing compared to single crystals for benefits in cost, deployability, and facile integration with the analyte. However, high-precision chemical quantum sensing suffers from large statistical errors from particle heterogeneity, fluorescence fluctuations related to particle orientation, and other unresolved challenges. To overcome these obstacles, UC Berkeley researchers have developed a novel microfluidic chemical quantum sensing device capable of high-precision, background-free quantum sensing at high-throughput. The microfluidic device solves problems with heterogeneity while simultaneously ensuring close interaction with the analyte. The device further yields exceptional measurement stability, which has been demonstrated over >103s measurement and across ~105 droplets. Greatly surpassing the stability seen in conventional quantum sensing experiments, these properties are also resistant to experimental variations and temperature shifts. Finally, the required ND sensor volumes are minuscule, costing only about $0.63 for an hour of analysis.
Enhanced Nucleic Acid Delivery To Cells
mRNA-based cancer therapies include vaccination via mRNA delivery of tumor neoantigens, delivery of mRNA encoding for immune checkpoint and other protein therapeutics, and induced expression of anticancer surface proteins such as CAR expression in T cells. Success requires transfection of a critical number of immune cells together with appropriate immune-stimulation to effectively drive anti-tumor responses. UC Berkeley researchers have developed an adjuvant-assisted mRNA LNP delivery method that uses mRNA LNP and adjuvant to enhance delivery of nucleic acids to immune cells in vivo and stimulate immune cells. They demonstrated the use of this system to reduce mRNA reporter protein expression in the liver and enhance protein expression in the spleen in mice and also demonstrated this system can be used to genetically engineer T cells by delivering a Cre-recombinase mRNA construct- transfection and editing of approximately 4% of T cells is achieved in vivo. The immune response is superior in our system compared to current, commercial lipid nanoparticle delivery technologies.
Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections
Researchers at the University of California, Davis have developed a technology to expedite COVID-19 diagnosis and treatment using viral spike protein (S-protein) targeted peptides Zika virus envelop protein.
Design Of Functional Protein Materials Based on Beta-Rippled Sheet Architectures
The rippled sheet was proposed by Pauling and Corey as a structural class in 1953. Following approximately a half century of only minimal activity in the field, the experimental foundation began to emerge, with some of the key papers published over the course of the last decade. Researchers at UC Santa Cruz have explored the structure of and have discovered ways to form new beta rippled sheets.
Mitochondria Targeting Photosensitizer for Photodynamic Therapy
Researchers at the University of California, Davis have developed a self-assembling, fibrous photosensitizer that targets mitochondria in tumor cells for destruction via photodynamic therapy with enhanced localization and potency.
Spectral Fluctuation Raman Spectroscopy (SFRS)
Our ability to experimentally measure the biomacromolecular structure of proteins and their complexes down to the atomic scale has progressed at a staggering pace in recent years. However, the dynamical conformational changes that affect, to name a few examples, DNA transcription, energy-transfer in photosynthesis and enzyme activity, and the transition from healthy to diseased states, remain difficult to capture. A non-perturbative, label-free approach that is sensitive to individual conformational states is single-protein Raman spectroscopy. However, the time resolution of single-protein Raman spectroscopy is typically limited to milliseconds (10-3 sec), limited by inherent signal strength. Protein conformational dynamics occur over a timescale ranging from tens of seconds down to microseconds (10-6 sec) or even nanoseconds (10-9 sec). To address these challenges UC Berkeley researchers have developed a novel, high-temporal dynamic range Raman spectrometer capable of measuring sub-microsecond, and even nanosecond, fluctuations in single- and few-molecule spectra. The available dynamic range can be used to study and control of biomolecular dynamics as related to protein-protein interactions, drug discovery, validating computational biophysics capabilities, and many other additional applications.
Systems For Pulse-Mode Interrogation Of Wireless Backscatter Communication Nodes
Measurement of electrical activity in nervous tissue has many applications in medicine, but the implantation of a large number of sensors is traditionally very risky and costly. Devices must be large due to their necessary complexity and power requirements, driving up the risk further and discouraging adoption. To address these problems, researchers at UC Berkeley have developed devices and methods to allow small, very simple and power-efficient sensors to transmit information by backscatter feedback. That is, a much more complex and powerful external interrogator sends an electromagnetic or ultrasound signal, which is modulated by the sensor nodes and reflected back to the interrogator. Machine learning algorithms are then able to map the reflected signals to nervous activity. The asymmetric nature of this process allows most of the complexity to be offloaded to the external interrogator, which is not subject to the same constraints as implanted devices. This allows for larger networks of nodes which can generate higher resolution data at lower risks and costs than existing devices.
Generalizable and Non-genetic Approach to Create Metabolically-active-but-non-replicating Bacteria
Researchers at the University of California, Davis have developed a method to stop bacterial growth while maintaining desirable metabolic functions for therapeutic and biotechnological applications.
Sequential Targeting and Crosslinking Nanoparticles for Tackling the Multiple Barriers to Treat Brain Tumors
Researchers at the University of California, Davis have developed an approach to improve drug delivery to tumors and metastases in the brain. Their multi-barrier tackling delivery strategy has worked to efficiently impact brain tumor management while also achieving increased survival times in anti-cancer efficacy.
(SD2022-180) Method of viral nanoparticle functionalization for therapy and imaging applications
Plant viral nanoparticles (plant VNPs) are promising biogenetic nanosystems for the delivery of therapeutic, immunotherapeutic, and diagnostic agents. The production of plant VNPs is simple and highly scalable through molecular farming in plants. Some of the important advances in VNP nanotechnology include genetic modification, disassembly/reassembly, and bioconjugation. Although effective, these methods often involve complex and time-consuming multi-step protocols.
Multicolor Photonic Pigments From Magnetically Assembled Nanorod Arrays
Direct Assembly Of Hydrophobic Nanoparticles Into Multifunctional Structures
Magnetically Tunable Photonic Crystals In Nonpolar Solvents
Guided Template Based Electrokinetic Microassembly (TEA)
Researchers at the University of California, Irvine have developed a guided electrokinetic assembly technique that utilizes dielectrophoretic and electroosmotic forces for micro- and nanomanufacturing. This technique provides a new way for assembling microelectronics and living cells for tissue engineering applications.
Nanocellulose-based Aerogel Fibers as Insulation
Researchers at the University of California, Davis have produced continuous, sheath-core, coaxial fibers with highly porous, nanocellulose, aerogel cores for use as high-performance insulators.
DNA-based, Read-Only Memory (ROM) for Data Storage Applications
Researchers at the University of California, Davis have collaborated with colleagues at the University of Washington and Emory University to develop a DNA-based, memory and data storage technology that integrates seamlessly with semiconductor-based technologies and conventional electronic devices.
Nanopore Sensor to Characterize Nano and Microscale Particles and Cells
Researchers at the University of California, Riverside can discriminate between mixed populations of cells and particles in solution using pressure to displace objects across a nanopore multiple times. Ionic current flow through the nanopore indicates the pressure required to translocate the object in the pore, which correlates to the object’s mass and volume. Key to these results is that a nanopore sensor allows pressure oscillations to capture and release repeatedly the same object to learn about its inertia and morphology. Such data can provide details about the size and shape of analytes, their morphologies and structural constraints, or even pathological conditions of living cells. Fig. 1 Nanopore sensing of differently sized cells in a mixed bacterial culture.
Precision Graphene Nanoribbon Wires for Molecular Electronics Sensing and Switch
The inventors have developed a highly scalable multiplexed approach to increase the density of graphene nanoribbon- (GNR) based transistors. The technology forms a single device/chip (scale to 16,000 to >1,000,000 parallel transistors) on a single integrated circuit for single molecule biomolecular sensing, electrical switching, magnetic switching, and logic operations. This work relates to the synthesis and the manufacture of molecular electronic devices, more particularly sensors, switches, and complimentary metal-oxide semiconductor (CMOS) chip-based integrated circuits.Bottom-up synthesized graphene nanoribbons (GNRs) have emerged as one of the most promising materials for post-silicon integrated circuit architectures and have already demonstrated the ability to overcome many of the challenges encountered by devices based on carbon nanotubes or photolithographically patterned graphene. The new field of synthetic electronics borne out of GNRs electronic devices could enable the next generation of electronic circuits and sensors.
Foliar Formulation to Protect Plants from Abiotic Stress
Prof. Juan Pablo Giraldo and his colleagues from the University of California, Riverside have developed a foliar formulation for increasing crop protection and photosynthetic performance when crops are under light, heat, and salinity stress. This is achieved by applying a nanomaterial (poly (acrylic acid) nanoceria, PNC) that interacts with plant chloroplasts to reduce abiotic stress. The nanoparticle formulation uses a novel, scalable and biocompatible approach to protect plant seeds, seedlings, and mature plants from stress. The emerging field of nano-enabled agriculture has the potential to create crops that are protected from climate change induced stresses and have enhanced photosynthesis. Fig 1: a, Nanoceria (PNC) increases photosynthesis and biomass in Arabidopsis plants under stress. No nanoparticles (NNP) are shown as control. b, Substantial damage to Arabidopsis plants exposed to excess light was mitigated by PNC.
Ultrastable Nanoemulsions In Disordered And Ordered States
Researchers in the Department of Chemistry and Biochemistry at UCLA have developed a method for the production of crystalline, iridescent emulsions stable to repeated dilutions.
Methods To Modulate Size, Malleability, And Biodistribution Of Cell-Based Therapeutics
While some cell therapies have experienced success, many current cell therapies fall short in that enough cells do not reach the target tissue and/or the cells are incapable of producing clinically relevant thresholds of desired products sufficient to impact the disease state. Consequently, there is a major fundamental need to genetically engineer therapeutic cells to be more effective and robust using integrating viruses and powerful gene editing technologies like CRISPR, which can target ten to hundreds of genes simultaneously. However, this is highly problematic because the process of genetic engineering introduces dangerous unwanted mutations into the genome that can lead to cancer and other life-threatening diseases, especially if such cells permanently engraft into the body or fuse with host cells, which is common with stem cells. Therefore, the FDA does not readily permit the introduction of new genetic material or the extensive alteration of endogenous genes in cell-based therapies with the exception of CAR-T cells. For this reason, there is a major underlying need in the cell therapy sector to genetically enhance therapeutic cells to express gene products encoding biologics and then render them safe prior to clinical use.
Exosome-Mimicking Nanovesicles
Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.
Single Conjugative Vector for Genome Editing by RNA-guided Transposition
The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.