Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > Materials

Categories

[Search within category]

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Preserving Protein Function Via Statistically Random Heteropolymers

Protein-based materials have the potential to change the current paradigm of materials science. However, it still remains a challenge to preserve protein hierarchical structure and function while making them readily processable. Protein structure is inherently fluid, and it is this property that contributes to their fragility outside of their native environment. Through the use of rationally designed statistically random heteropolymers, it is possible to stabilize proteins at each hierarchical level and process them in organic solvents, a common need for materials fabrication. The chemical and architectural complexities of statistically random heteropolymers provide a modular platform for tunable protein-polymer-solvent interactions. This provides opportunities not offered by small molecule surfactants or amphiphilic block copolymers. Through evaluation of horseradish peroxidase and green fluorescent protein structure, we show that statistically random heteropolymers can stabilize enzymes. Allowing for activity retention when stored in organic solvent, over 80% activity was observed after 24 hours. Furthermore, horseradish peroxidase and chymotrypsin proteins, when encapsulated in statistically random heteropolymers, are still accessible to their substrates while remaining inaccessible to the denaturing organic solvent. Statistically random heteropolymers have potential in creating stimuli-reponsive materials and nanoreactors composed of proteins and synthetic materials.

Methods for Producing Cultured Meat that has Heterogeneous Composition

UCLA researchers in the Departments of Integrative Biology and Physiology and Molecular, Cellular, and Developmental Biology have developed a novel method for the production of marbled, cultured meat with desirable texture and flavor.

Nanoparticles-Enabled Casting of Bulk Ultrafine Grained/Nanocrystalline Metals

UCLA researchers in the Department of Mechanical and Aerospace engineering have fabricated bulk, thermally stable ultrafine grained/nanocrystalline metals using conventional casting techniques.

Scalable Manufacturing of Copper Nanocomposites with Tunable Properties

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a cost-effective method to produce copper-based nanocomposites with excellent mechanical, electrical and thermal properties.

Biomimetic Conductive Hydrogels

UCLA researchers in the Department of Bioengineering have developed a novel electrically conductive scaffold system with a hyaluronic acid (HA)-based hydrogel for biomimetic research to treat spinal cord and other central nervous system (CNS) injuries.

New Classes Of Cage And Polyhedron And New Classes Of Nanotube And Nanotube With Planar Faces

UCLA researchers have developed a novel algorithm that can be used to design unique self-assembled molecules and nanostructures.

Development Of Organ-Preservation Solution Based On O2 Releasing Particles

UCLA researchers in the Departments of Bioengineering, Radiology, and Chemical and Biomolecular Engineering have developed a novel oxygen-generating material for promoting the viability of cells.

Use Of Non-Ionic Copolypeptide Hydrogels For Cell Suspension And Cell And Molecule Delivery

UCLA researchers in the Departments of Bioengineering, Chemistry and Biochemistry, and Neurobiology have developed novel copolypeptide hydrogel formulations for the delivery of cells and molecules to locations throughout the body, including the central nervous system.

Material For Thermal Regulation

Researchers at UCI have developed a lightweight, flexible thermal material that, due to the extent that it is stretched, allows for tunable control of heat flow.

Double-Negative-Index Ceramic Aerogels For Thermal Superinsulation

UCLA researchers in the Departments of Chemistry and Biochemistry and Materials Science and Engineering have developed a novel ceramic aerogel material that has robust mechanical and thermal stability under extreme conditions.

Method Of Creating Scalable Broadband And Tunable Light Emitter At The Nanoscale Using Layered Black Phosphorus

UCLA researchers in the Department of Electrical and Computer Engineering have developed a novel method to create a room temperature stable broadband tunable light emitter at the nanoscale.

Trehalose Hydrogels For Stabilization And Delivery Of Proteins

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel trehalose hydrogel to help stabilize proteins for drug delivery.

Nanoparticles For Specific Detection And Killing of Pathogenic Bacteria

UCLA researchers in the Department of Chemistry and Biochemistry and Department of Medicine have developed novel functionalized mesoporous silica nanoparticles that can specifically identify pathogenic bacteria and deliver on-target drug treatments.

Soft Burrowing Robot for Simple & Non-Invasive Subterranean Locomotion

A soft robot that can successfully burrow through sand and dirt, similar to a plant root.

Hydraulically Actuated Textiles

A soft, planar, actuator based on hydraulically actuated textiles.

Super Ceramics With Self-Dispersed Nanoparticles Via Casting

UCLA researchers in the Departments of Mechanical and Aerospace Engineering and Materials Science and Engineering have developed a novel casting method to fabricate high performance bulk ceramic materials containing dispersed nanoparticles.

Hydrogel For Endogenous Neuronal Progenitor Cells (NPC) Recruitment

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a novel hydrogel that aids in neuronal regeneration post stroke or disease.

A Method Of Making Carbon Coated Oxides As High-Performance Anode Materials

UCLA researchers in the Department of Materials Science and Engineering have developed a carbon-coated silicon nanoparticle-based electrode material for lithium-ion batteries with high energy density and long lifetime.  They have also developed a scalable fabrication method for this material.

Amphiphilic Derivatives Of Thioether Containing Block Copolypeptides

UCLA researchers in the Department of Bioengineering have developed a new method to generate amphiphilic block copolypeptides.

Scalable and Facile Synthesis of Small (Less than 10 nm) High Purity Titanium Diboride Nanoparticles

Researchers at the UCLA Department of Mechanical and Aerospace Engineering have developed methods to synthesize titanium boride nanomaterial through a scalable and facile synthesis scheme.

Micro- and Nanocomposite Support Structures for Reverse Osmosis Thin Film Membranes

UCLA researchers in the Department of Civil and Environmental Engineering have invented a novel nanofiltration (NF) and reverse osmosis (RO) composite membrane for water desalination applications.

Novel Multi-Scale Pre-Assembled Phases of Matter

UCLA researchers from the Departments of Chemistry and Physics have developed a novel method for creating multi-scale pre-assembled phases of matter with customizable symmetries, topologies, and degrees of order and disorder.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

  • Go to Page: