Browse Category: Nanotechnology > Materials

[Search within category]

Photonic Physically Unclonable Function for True Random Number Generation and Biometric ID for Hardware Security Applications

Researchers at the University of California, Davis have developed a technology that introduces a novel approach to hardware security using photonic physically unclonable functions for true random number generation and biometric ID.

Photothermal Patterning Flow Cell

Researchers at the University of California, Davis have developed a photothermal patterning flow cell that enables precise and efficient patterning of polymer films, compatible with existing cleanroom photolithography equipment.

Thin Film Thermophotovoltaic Cells

Researchers at the University of California, Davis (“UC Davis”) have developed an optical absorber/emitter for thermophotovoltaics application with a tunable emission wavelength.

Metasurface, Metalens, and Metalens Array with Controllable Angular Field-of-View

Researchers at the University of California, Davis have developed an optical lens module that uses a metalens or a metalens array having a controllable angular field-of-view.

Inverse Design and Fabrication of Controlled Release Structures

Researchers at the University of California, Davis have developed an algorithm for designing and identifying complex structures having custom release profiles for controlled drug delivery.

Architectural And Material Design Aspects For Strong And Tough Interfaces

An innovative approach to joining materials that enhances strength and toughness at interfaces, inspired by natural structures.

High-Precision Chemical Quantum Sensing In Flowing Monodisperse Microdroplets

      Quantum sensing is rapidly reshaping our ability to discern chemical processes with high sensitivity and spatial resolution. Many quantum sensors are based on nitrogen-vacancy (NV) centers in diamond, with nanodiamonds (NDs) providing a promising approach to chemical quantum sensing compared to single crystals for benefits in cost, deployability, and facile integration with the analyte. However, high-precision chemical quantum sensing suffers from large statistical errors from particle heterogeneity, fluorescence fluctuations related to particle orientation, and other unresolved challenges.      To overcome these obstacles, UC Berkeley researchers have developed a novel microfluidic chemical quantum sensing device capable of high-precision, background-free quantum sensing at high-throughput. The microfluidic device solves problems with heterogeneity while simultaneously ensuring close interaction with the analyte. The device further yields exceptional measurement stability, which has been demonstrated over >103s measurement and across ~105 droplets.  Greatly surpassing the stability seen in conventional quantum sensing experiments, these properties are also resistant to experimental variations and temperature shifts. Finally, the required ND sensor volumes are minuscule, costing only about $0.63 for an hour of analysis. 

Producing aluminum oxide (alumina) from reaction of a gallium/aluminum alloy with water

UC Santa Cruz investigators initially made a breakthrough discovery by which a gallium-rich alloy of gallium and aluminum containing aluminum nanoparticles that could be formed at relatively low temperatures (between 20 and 40 degrees C) could liberate nearly theoretical quantities of hydrogen in effectively any source of water (NCD 32779) through a chemical reaction requiring no outside electrical input and no corrosive byproducts. One of the eventual useful byproducts of this reaction is alumina (aluminum oxide, Al2O3) a commodity chemical with a wide variety of uses in industry. This technology describes ways of further refining aluminum oxide from the products of this reaction. 

Sinter-Free Low-Temperature 3D-Printing Of Nanoscale Optical Grade Fused Silica Glass

Researchers at UC Irvine have developed a new method to 3D-print free-form silica glass materials which produces products with unparalleled purity, optical clarity, and mechanical strength under far milder conditions than currently available techniques. The novel processing method has potential to radically transform microsystem technology by enabling development of silica-based microsystems.

Enhancing Light-Matter Interactions In Mos2 By Copper Intercalation

Researchers at the University of California, Davis have developed layered 2D MoS2 nanostructures that have their light-interactive properties improved by intercalation with transition and post-transition metal atoms, specifically Copper and Tin.

Acid-Free Synthesis of Electrocatalyst Technology

The present invention describes a novel method for acid-free pyrolytic synthesis of metal-nitrogen-carbon (M-N-C) catalysts for use in fuel cell/energy conversion applications. This method allows for rapid production of M-N-C catalysts that exhibit high activity and selectivity for CO2 electroreduction without needing harsh acids or bases.

(SD2021-154) A new platform for the controlled entrapment and release of molecular cargo

Researchers from UC San Diego have invented a new form of materials, polymer-integrated crystals (PIX), which combine the structural order of protein crystals with the dynamic, stimuli-responsive properties of synthetic polymers. The inventors have shown that the crystallinity, flexibility, and chemical tunability of PIX can be exploited to encapsulate guest proteins with high loading efficiencies. And, the electrostatic host-guest interactions enable reversible, pH-controlled uptake/release of guest proteins as well as the mutual stabilization of the host and the guest, thus creating a uniquely synergistic platform toward the development of functional biomaterials and the controlled delivery of biological macromolecules.

Method To Inverse Design Mechanical Behaviors Using Artificial Intelligence

Metamaterials are constructed from regular patterns of simpler constituents known as unit cells. These engineered metamaterials can exhibit exotic mechanical properties not found in naturally occurring materials, and accordingly they have the potential for use in a variety of applications from running shoe soles to automobile crumple zones to airplane wings. Practical design using metamaterials requires the specification of the desired mechanical properties based on understanding the precise unit cell structure and repeating pattern. Traditional design approaches, however, are often unable to take advantage of the full range of possible stress-strain relationships, as they are hampered by significant nonlinear behavior, process-dependent manufacturing errors, and the interplay between multiple competing design objectives. To solve these problems, researchers at UC Berkeley have developed a machine learning algorithm in which designers input a desired stress-strain curve that encodes the mechanical properties of a material. Within seconds, the algorithm outputs the digital design of a metamaterial that, once printed, fully encapsulates the desired properties from the inputted stress-strain curve. This algorithm produces results with a fidelity to the desired curve in excess of 90%, and can reproduce a variety of complex phenomena completely inaccessible to existing methods.

Nanophotonic Perovskite Scintillator For Time-Of-Flight Gamma-Ray Detection

         Positron emission tomography (PET) is a powerful tool both in biomedical research and clinical patient care, particularly in the diagnosis of cancer, search for metastases, cancer treatment monitoring, diagnosis of diffuse diseases causing dementia, or metabolic blood flow imaging. However, the poor efficiency of current PET detectors (1-2%) requires large radiotracer doses and integration times, driving both cost and patient exposure per scan. High detector capital cost also renders PET scanners prohibitively expensive. Finally, while time-of-flight PET can enhance the spatial resolution of PET by measuring temporal correlation of detected gamma photons, the modality is limited by the latency of current gamma radiation detectors (timing resolutions of ~200-500 ps). Overall, the expense and inefficiency of available gamma radiation detectors hinder the full technological capabilities of PET and its affordable use in patient care.         To address these problems, researchers at UC Berkeley have developed a new gamma radiation detector architecture with the potential for an order of magnitude improvement in both time resolution (down to 10 ps) and efficiency. The design uses novel perovskite nanomaterials and well-established nanotechnology manufacturing methods to produce a detector at a fraction of the cost of current offerings. Together, the high efficiency and timing resolution of the nanophotonic detector design should drastically improve the spatial resolution (including by time-of-flight measurements) of PET scanners and dose-suitability for elderly patients. Benefits in affordability are multiple, lowering detector cost and as well as required radiotracer dose.

Multifunctional Water Filters For Metal And Oxyanion Removal

Widespread metal and oxyanion contaminants in groundwater due to industrial activities, land use, and natural geology have resulted in a scarcity in potable water in California and worldwide. These contaminants can be carcinogenic and highly toxic at low concentrations, presenting an urgent need for innovative water purification technologies. However, existing technologies for treating groundwater and brackish water are often energy intensive, non-selective, or not suitable for recovery. Therefore, advances in oxyanion removal technologies could significantly improve the potential of safely using groundwater as an alternative drinking water resource. To address this opportunity, researchers at UC Berkeley have developed a novel multifunctional water filter that exploits the high removal efficiency of toxic metal ions and oxyanions by using two-dimensional (2D) molybdenum disulfide (MoS2) nanosheets. MoS2 exhibits multiple removal pathways towards oxyanions such as Cr (VI) and Se (VI), including adsorption, reduction, and physical filtration. The multifunctionality of the MoS2 filters allows in-situ detoxification of the oxyanions, which could greatly reduce the pressure on waste/waste stream treatment. Moreover, MoS2 filters can be integrated into existing water treatment processes (e.g., low-pressure micro/ultrafiltration and adsorption). This integration allows for the treatment of a wide selection of non-traditional water resources, including groundwater and industrial wastewater, and also reduces the costs of the additional steps required for the removal of toxic metals in traditional water treatment processes. The innovation is more efficient, and more selective in targeting oxyanion species, in comparison to currently available technologies, such as reverse osmosis, nanofiltration, adsorption, ion exchange, and coagulation-precipitation. This novel multifunctional filter could potentially reduce operational costs, simplify maintenance, and minimize the impacts of environmental factors compared to other oxyanion treatment technologies.

Functionalized Sila-Adamantane

Brief description not available

Magnetochromatic Spheres

Brief description not available

Carbon Nanotube Infrared Detector

Brief description not available

Chromium Complexes Of Graphene

Brief description not available

  • Go to Page: