Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > Materials

Categories

[Search within category]

Process to Synthesize Size Controlled Nanocrystalline Materials for Battery Electrodes

Researchers at UCR have developed a scalable and affordable process for synthesizing nanostructure materials like LiFePO4 (LFP) at low temperatures (150 to 200 oC) with highly reproducible sizes and morphologies. The nanocrystalline structures may be utilized as active elements in battery cathodes or anodes to enhance charging cycle stability or enhance capacitance (including when doped with conductive metals). The process is performed at relatively low temperatures, and uses environmentally friendly solvents.  This results in lower up front and ongoing manufacturing costs in cathode and anode production.  The particle size and shape, as well as crystal orientation of the produced structures can be controlled, not only preventing loss of performance and capacity due to increased stresses and charge de-stabilization, but also improving rate capability.  The nanostructures created with this method will result in increased battery power and energy density. Fig. 1: Reproducible nanoprism crystal morphologies produced via the method described here.   Fig. 2: Reproducible nanobelt crystal morphologies produced via the method described here.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Scalable And Inexpensive Production Of Polymer-Metal Nanocomposite By Thermal Drawing

UCLA researchers have developed a fabrication process for uniformly distributing metallic nanoparticles within polymer fibers.

Materials for Autonomous Tracking, Guiding, Modulating, and Harvesting of Energetic Emissions

UCLA researchers in the Department of Materials Science and Engineering have developed a novel photo-responsive polymer that can real-time detect, track, modulate, and harvest incident optical signals and a broad range of energetic emissions at high accuracy and fast response rate.

Full Color Quantum Dot Patterning Via Soft Lithography

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel quantum dot patterning method via soft lithography. It allows cost-effective, large-scale and high resolution full-color quantum dots patterning, which will revolutionize the nanoelectronics and QD-based display industries.

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

Supercapacitor With Non-Planar Electrodes

UCLA researchers have developed a solid-state supercapacitor structure with non-planar electrodes and ionogels dielectric medium.

Pore Size Engineering Of Porous Carbons Using Covalent Triazine Frameworks As Precursors

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to engineer uniform pore sizes within porous carbon utilizing a covalent triazine frameworks as precursors.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

Process For Recycling Surfactant In Nanoemulsion Production

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method to separate and recycle surfactants used in the manufacturing of nanoemulsions.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Substrate For Deep Vertical Etches

Many modern microelectromechanical and microembossing applications require the formation of high resolution vertical channels through thin film substrates, which are often difficult and expensive to achieve in current substrates. Researchers at UCI have overcome these limitations by developing an inexpensive material that is inherently easy to vertically etch.

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

Measurement of Nanoscale Physical Enhancement by Materials under X-ray Irradiation

Researchers at the University of California, Davis have developed a method to study interactions of high density nanoparticles in solution with high spatial resolution.

High Performance and Flexible Chemical And Bio Sensors Using Metal Oxide Semiconductors

UCLA researchers in the Department of Materials Science and Engineering have developed a simple method producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing for future wearable human technologies as well as non-invasive glucose testing.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Silver Nanowire-Indium Tin Oxide Nanoparticle As A Transparent Conductor For Optoelectronic Devices

UCLA researchers in the Department of Materials Science and Engineering have developed a novel composite material made of metal oxide nanoparticles (NPs) and silver nanowires (AgNWs).

  • Go to Page: