Browse Category:


[Search within category]

Injectable Magnetic Nanocomposite Implants For Tissue Repair

Background: In 2014, the orthopedic soft tissue repair market was $10.3B, and is expected to grow due to an increasing number of soft tissue injuries with very few alternatives to surgery. Current procedures are very invasive, and require drilling holes followed by bone marrow extraction to repair the damaged tissue. Not only is the procedure costly, but the patient is held in recovery for a very long period of time.  Brief Description: UCR researchers have developed 3D magnetic nanocomposite scaffolds that can be injected into the target site for improved tissue regeneration and healing. The material can fill any shape or size of the defective site in just 2 injections. The first injection targets subchondral bone followed by a second injection that promotes cartilage regeneration. This novel invention will allow the patient to save costs incurred on surgical procedures, and regain full functionality under a shorter recovery time.

Enzyme-Responsive Nanoparticles For Targeted Accumulation And Prolonged Retention In Myocardial Infarction

Heart failure following a myocardial infarction (MI) continues to be one of the leading causes of death. Immediately after MI, there is an initial inflammatory response with cardiomyocyte death and degradation of the extracellular matrix. This results in negative left ventricular (LV) remodeling leading to wall thinning, LV dilation, and depressed cardiac function. Several experimental approaches have been examined to inhibit this negative remodeling process. One promising direction is the use of injectable biomaterials, which can be used as stand-alone scaffolds to encourage endogenous repair or for delivering therapeutics such as cells, growth factors, or small molecules. Early intervention of MI has the potential to slow or inhibit the progression of negative LV remodeling. To date, most therapeutic delivery strategies have involved intramyocardial biomaterial injections, although translation to acute MI patients is unlikely given the increased risk of ventricular rupture immediately post-MI. One promising, minimally invasive strategy is the systemic injection of nanoparticles. However, many of the investigated systems lack long-term retention within the MI. 

A New Methodology For 3D Nanoprinting

Researchers at the University of California, Davis have discovered a novel protocol to enable 3D printing with nanometer precision in all three dimensions using polyelectrolyte (PE) inks and atomic force microscopy.

Universal Coating Compound

Polydimethyl siloxane (PDMS) has many characteristics that make it the most popular candidate for producing organ-on-a-chip devices or mirco-physiological systems (MPS) devices. After crosslinking, PDMS has shown to be biologically compatible and amenable to many standard cell culture techniques due to it’s transparency, oxygen permeability, and low auto-fluorescence. However, due to PDMS’s hydrophobicity, molecules that are also hydrophobic partition into the PDMS to produce unpredictable concentrations in cell and media channels making it impossible to predict the actual dosing concentrations for drug investigations. This unpredictability is an obstacle for using organ-on-a-chip devices as screens for drug candidates in discovery stages.   Researchers at UC Berkeley have developed a simple coating procedure that allows the formation of substrate independent (universal) coatings. The researchers identified a novel compound able to form stable coatings that outperformed existing dip-coating precursor molecules in their ability to prevent absorbance of small molecules into a variety of organic and inorganic polymers, such as PDMS. 

Nanostructured Metal Oxide Sensing Film From Liquid Precursor

Nanostructured metal oxide materials have generated much interest for sensing applications due to their high surface area, low thermal mass, and superior performance.  However, stable and reproducible integration of these materials into a functional sensor is difficult. Vacuum deposition techniques such as sputtering or evaporation do not offer substantial sensing performance improvement. Sacrificial templating steps have been suggested, but the manufacturing complexity and cost are not suitable for high volume production. There remains a need for a simple, effective method to prepare nanostructured metal oxide films for low power, miniaturized gas sensors with high sensitivity.   Researchers at UC Berkeley have developed a novel method for creating highly porous, nanostructured metal oxide film in a controlled location from a liquid precursor using a localized heat source. This method eliminates processing steps, such as the need to separately synthesize nanomaterials and suspend them into a stable ink for deposition. The localized heat source acts to both evaporate the solvent and thermally decompose the precursor into a highly porous film of nanocrystalline metal oxide, as well as to define the location of the formed film. The utility of this method has been demonstrated for the formation of a tin oxide gas sensor with superior performance, including high sensitivity and fast response and recovery time for carbon monoxide gas. However, the method could be useful for other applications that require localized formation of a porous film of nanocrystalline metal oxide.  

X-Ray-Triggered Release of Drugs from Nanoscale Drug Carriers

Researchers at the University of California, Davis have identified a means by which large quantities of inactive drugs (particularly chemotherapeutics) can be delivered by nanoscale drug carriers to a target location where they can be rendered active by X-rays.

Two And Three Dimensional DNA Antenna And Photonic Transfer Nanostructures

Fluorescence Resonance Energy Transfer (FRET) is a mechanism which describes the photonic energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy in the form of undetectable virtual photons to an acceptor chromophore. FRET has been widely used to study the structure and dynamic of biomolecules. Specifically, by using dyes conjugated on a DNA strand, FRET can be applied to molecular sensors in which fluorescence signals change as a result of altered distance between donor and acceptor chromophores due to hybridization or enzymatic reactions. In addition, the DNA strand can act as a photonic wire along which the photonic energy is transferred. However, because fluorescence is highly influenced by environmental conditions and surrounding molecules, the energy transfer from a donor dye conjugated on a DNA strand is easily quenched by the dye-DNA and dye-dye interaction, often lowering FRET efficiency to the acceptor dye. Furthermore, when multiple chromophore/fluorescent donors and acceptor groups/entities are arranged on 2D and 3D DNA structures, contact and other quenching mechanisms can occur which greatly reduce the long range FRET efficiency. This rapid loss of long distance FRET efficiency greatly reduces the viability of DNA based photonic wires and antennas and negates any useful or practical applications. Therefore quenching should be resolved in order to apply the molecular FRET system to the device fabrication with efficient energy transfer.

Manufacturing of Tungsten Scandate Nano-Composite Powder via Sol-Gel Method for High Current Density and Long-Life Cathodes

The researchers at University of California, Davis have developed a new process for manufacturing tungsten scandate nano-composite powder that produces high current density and long-life cathodes for high-power terahertz vacuum electron devices. Scandate tungsten nano-composite cathodes enable advancement of microwave sources that bridge the "Terahertz gap."

Chemical Energy Storage Based on Nanoporous Aluminum

Researchers in the Department of Chemistry and Biochemistry at UCLA have developed a novel form of nanoporous aluminum hydride for storing hydrogen at room temperature and pressure.

Novel Gene Delivery Approach for Controlled and Sustained Transfection of Cells

UCLA researchers in the Department of Chemical and Biomolecular Engineering have developed a novel hydrogel scaffold-mediated gene delivery approach that can achieve enhanced and sustained transfection of endogenous cells in vivo.

Magnetically Tunable Photonic Crystals Based On Anisotropic Nanostructures

Background: Many companies are venturing into new ways to improve paint technology. Current paramagnetic paint can be applied on anything from building interiors to vehicles so that the color can easily change when electric currents are applied. This nanomaterial paint market is projected to grow to $1.4B by 2017 with many notable end users in the display, chemical and automotive industries.  Brief Description: UCR researchers have discovered photonic crystals that can be tuned by changing the magnetic field direction. These novel colloidal crystals have magnetic and anisotropic properties that allow them to reach maximum diffraction intensity at certain angles. This could serve as a platform technology since they can take whatever material given and optimize its optical components for assembly into photonic structures.

Potential Driven Electrochemical Modification of Tissue

Researchers at UC Irvine have developed a minimally invasive technology that uses electrical potentials to perform a variety of to modify and reshape soft tissues such as cartilage

High Performance Thin Films from Solution Processible Two-Dimensional Nanoplates

UCLA researchers in the departments of Chemistry and Materials Science have recently developed a novel material for use in flexible, printed electronics.

Hybrid Molecule Nanocrystal Photon Upconversion

Background: Solar resources are at a premium and the solar energy industry is a $130B market with growth projects of 30%. High demands for attaining renewable energy efficiently and cost-effectively, along with government incentives, are all good indicators for finding innovative ways to optimize solar energy systems.  Brief Description: Traditional semiconducting materials, i.e. silicon and cadmium telluride are unable to absorb all wavelengths of light for conversion into usable energy. UCR researchers were able to functionalize semiconducting nanocrystals that are very efficient in upconverting near infrared photons into higher energy photons. They have optimized upconversion through carefully formulated combinations of semiconductor nanocrystals and ligands that enhance emission by up to 3 orders of magnitude over traditional semiconducting materials. This will remedy current efforts to reduce electricity costs when applied in the solar industry.

Nanomotor Photolithography

The rapid miniaturization of devices and machines has fueled the evolution of advanced fabrication techniques. However, current technologies of nanopatterning are still limited by the resolution of the pattern, the major cost of implementation, range of patterns that can be written, the patterning speed as well as the environment where such a technique can be used. The complexity and high cost of state-of-the-art high-resolution lithographic systems have prompted unconventional routes for nanoscale patterning. Inspired by the sophistication of natural nanomachines, synthetic nanomotors have recently demonstrated remarkable performance and functionality.

Monolithic Integration of Ultra-Scaled High Performance Pin-Size Wearable Electronics

Wearable electronics for health monitoring have gained increased interest after conformal tattoo-like electronic sensors were co-integrated on elastomeric sheets.  One of the design requirements in such wearable electronics was to carefully adjust the effective Young’s modulus and bending stiffness of the resulting layered electronics, and this has restrained the compact integration of the electronic components because the single transistor elements had dimensions that were in millimeter scale. The promise of tattoo-like epidermal electronics has inspired a significant research effort to optimize the mechanics of these structures.

Piezoelectric Nanoparticle-Polymer Composite Foams

Mechanically flexible piezoelectric materials are highly sought after when building advanced sensors, actuators, and energy scavenger devices. The most common piezoelectric materials used in applications are focused on electroceramic thin films made from lead zirconate titanate or barium titanate. Although these materials can have large piezoelectric moduli, as thin films they are extremely brittle and difficult to shape into highly mechanically compliant structures. Improving mechanical flexibility of piezoelectrics, and creating higher order structures, is critical for driving new applications such as biological energy harvesting, compact acoustic transducers, and in vivo biodiagnostics.  There is a need to develop alternative materials that offer high piezoelectric coefficients while maintaining elasticity and isotropic mechanical integrity—that are also cheap to produce.

Process for the Fabrication of Nanostrucured Arrays on Flexible Polymer Films

The technology is a process for making arrays of nanostructures on polymer films.It features a two step process for creating thin polymer films with unique optical and wetting properties that can be used for coating both planar and curved surfaces.It is possible to implement this process in a mass fabrication process over large areas.

Composition Structure with Tessllated Layers

The technology is a tessellated composite structure that is resistant to tearing and fatigue.It features improved resistance to tearing and fatigue damage and is biased towards compression stress, as opposed to tensile stress.

Novel Quantum Dot Field-Effect Transistors Free of the Bias-Stress Effect

Novel quantum dot field-effect transistors without bias-stress effect that also have high mobility and are environmentally stable.

Nail Polish Removable by Peptides

The invention described is a nail polish base coat that can be dissolved using an aqueous solution of cysteine. Current nail polishes and base coats are removed using a combination of vigorous scrubbing and soaks in harsh chemicals such as ethyl acetate or acetone for long periods of time. The polymer described in this invention would eliminate exposure to harsh chemicals and vigorous scrubbing. Therefore making the process of nail polish removal more comfortable and healthier nails for frequent nail polish users.

Novel Multivalent Bioassay Reagents

The guiding principle for the creation of biomolecular recognition agents has been that affinity is essential for both strength and specificity.  Monoclonal antibodies, the dominant workhorse of affinity reagents, have mono-valent affinities in the uM-nM range with apparent affinities that can be sub nM with the bi-valency intrinsic in intact immunoglobulin structure.  The avidin-biotin interaction used ubiquitously for biomolecular assembly is femto-molar and both highly specific and essentially irreversible.  High affinity has been proclaimed the essential goal for the selection of useful specific aptamers, though there has been disagreement about a tight coupling of affinity and specificity.  

An All Solid-State Wafer Bonding Method Of III-V Materials On Si CMOS Using Patterned Metal Structures

III-V compound semiconductor materials comprise elements from the third group (such as Al, Ga, and In) and fifth group (such as N, P, As, and Sb) of the periodic table. It has become a trend for both scientific research and semiconductor industry to combine the high-speed III-V semiconductors as both electronic and optoelectronic devices with low-cost Si circuitry. Integration of III-V functional devices on Si substrates was generally achieved by epitaxial growth of III-V material layers on Si, or by directly bonding of III-V semiconductor layers with the Si wafer. Most methods are not compatible with CMOS process due to their complicated procedures, or strong changes to the surface morphology of bonding layer, set aside the ability to arbitrarily define structures at any location and with any shape in a planar CMOS-like fabrication process. Presently need an improved way to:(1) integrate III-V semiconductors onto Si that is compatible with current CMOS fabrication procedure,(2) cause minimum or zero crystal defects to the bonded semiconductor layers, and(3) enable further fabrication of advanced functional devices using the bonded layers atop functional CMOS circuitry without degraded performance.

  • Go to Page:

University of California
Innovation Alliances and Services

1111 Franklin Street, 5th Floor,Oakland,CA 94607-5200 |
Tel: 510.587.6000 | Fax: 510.587.6090 |