Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > Materials


[Search within category]

Approach For Efficient Protein Incorporation Into Recombinant Vaults

UCLA researchers in the departments of Medicine, Microbiology, Immunology & Molecular Genetics, and Bioengineering have developed a novel method for loading protein payloads into vault nanoparticle carriers.

In-Situ TEM Holder With STM Probe And Optical Fiber

Researchers at UCI have developed a fully integrated sample mount for the simultaneous high-resolution imaging and electronic and optical characterization of thin film devices.

High Stability PtNiX-M Electrochemical Catalyst

UCLA researchers in the Department of Material Science and Engineering have invented a novel and highly stable platinum-based catalyst material for fuel cell technologies.

Stable Alloy Of Palladium Hydride With High Hydrogen Content

Researchers led by Yu Huang from the Department of Chemistry and Biochemistry at UCLA have developed a cheap and simple way to create palladium hydride with high hydrogen content.

High Performance PtNiCuMo Electrochemical Catalyst

UCLA researchers in the Department of Materials Science and Engineering have developed multimetallic PtNiCuMo nano octahedral catalyst that has demonstrated greatly improved mass activity, specific activity, and stability for application in fuel cells.

Supraballs: Self-assembled Melanin Particles for Structural Color Production

Conventional pigments are used to color materials and are subject to fading in ultraviolet light as well having the potential toxicity associated with conjugated organic pigments. Recently, there has been an interest in replacing these conventional pigments with so called structural colors which allow for the creation of a spectrum of nonfading colors without pigments. Moreover, these new structures create color and cause light to scatter. The creation of these new structures have been challenging, but researchers have developed a technique that can transcend these obstacles.

Efficient Synthesis of Nanoscale Transition Metal Borides

Researchers at UCR have developed a simple and efficient transition metal boride synthesis.  The transition metal borides are synthesized by directly heating metal chloride and elemental boron in the presence of reducing tin (Sn) between temperatures of 700-900 °C for about eight hours. The resulting transition metal boride products are single-phase nanocrystalline materials with an average size of 100 nm. MoB2, MoB, Mo2B4, Mo2B, CoB, FeB, VB2, NbB, NbB2, TaB2 and WB were all synthesized using this new synthetic method.   Fig. 1a shows a sealed quartz tube that was heated to ~800 °C. The pellet at the bottom of the tube contains the desired transition metal boride product. The top of the tube contains crystallized SnCl2. Fig. 1b is an X-ray diffraction (XRD) pattern taken of crystallized SnCl2.         Fig. 2a is a comparison of the XRD patterns of  MoB2 synthesized by the previously known method of solid state metathesis (red) and the new method described herein (blue).  Fig. 2b is a high resolution scanning electron microscope (HRSEM) image of MoB2 synthesized by previously known solid state metathesis (SSM-MoB2) and Fig. 2c shows materials synthesized by the new method. SSM-MoB2 is contaminated by β-MoB and Mo, whereas Sn-MoB2 reaction products are single phase without contamination. HRSEM shows nanospheres and nanorods for SSM-MoB2 and Sn-MoB2, respectively.  

Process to Synthesize Size Controlled Nanocrystalline Materials for Battery Electrodes

Researchers at UCR have developed a scalable and affordable process for synthesizing nanostructure materials like LiFePO4 (LFP) at low temperatures (150 to 200 oC) with highly reproducible sizes and morphologies. The nanocrystalline structures may be utilized as active elements in battery cathodes or anodes to enhance charging cycle stability or enhance capacitance (including when doped with conductive metals). The process is performed at relatively low temperatures, and uses environmentally friendly solvents.  This results in lower up front and ongoing manufacturing costs in cathode and anode production.  The particle size and shape, as well as crystal orientation of the produced structures can be controlled, not only preventing loss of performance and capacity due to increased stresses and charge de-stabilization, but also improving rate capability.  The nanostructures created with this method will result in increased battery power and energy density. Fig. 1: Reproducible nanoprism crystal morphologies produced via the method described here.   Fig. 2: Reproducible nanobelt crystal morphologies produced via the method described here.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Graphene-Polymer Nanocomposite Incorporating Chemically Doped Graphene-Polymer Heterostructure for Flexible and Transparent Conductive Films

UCLA researchers in the Department of Electrical Engineering have invented a novel graphene-polymer nanocomposite material for flexible transparent conductive electrode (TCE) applications.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Scalable And Inexpensive Production Of Polymer-Metal Nanocomposite By Thermal Drawing

UCLA researchers have developed a fabrication process for uniformly distributing metallic nanoparticles within polymer fibers.

Materials for Autonomous Tracking, Guiding, Modulating, and Harvesting of Energetic Emissions

UCLA researchers in the Department of Materials Science and Engineering have developed a novel photo-responsive polymer that can real-time detect, track, modulate, and harvest incident optical signals and a broad range of energetic emissions at high accuracy and fast response rate.

Full Color Quantum Dot Patterning Via Soft Lithography

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel quantum dot patterning method via soft lithography. It allows cost-effective, large-scale and high resolution full-color quantum dots patterning, which will revolutionize the nanoelectronics and QD-based display industries.

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

Robust Mesoporous Nife-Based Catalysts For Energy Applications

UCLA researchers in the Department of Chemistry and Biochemistry have used selective dealloying method to produce novel high-performance, robust, and ultrafine mesoporous NiFeMn-based metal/metal oxide composite oxygen-evolving catalysts.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

Supercapacitor With Non-Planar Electrodes

UCLA researchers have developed a solid-state supercapacitor structure with non-planar electrodes and ionogels dielectric medium.

Pore Size Engineering Of Porous Carbons Using Covalent Triazine Frameworks As Precursors

UCLA researchers in the Department of Chemistry and Biochemistry have developed a new method to engineer uniform pore sizes within porous carbon utilizing a covalent triazine frameworks as precursors.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

Selective Transfer Of A Thin Pattern From Layered Material Using A Patterned Handle

Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-language:JA;} Van der Waals crystals are a class of materials composed of stacked layers. Individual layers are single- or few-atoms thick and exhibit unique mechanical, electrical, and optical properties, and are thus expected to see widespread adoption in devices across a range of fields such as optical, electronic, sensing, and biomedical devices.  Graphene and transition metal dichalcogenides offer desirable properties as few-layer or monolayer film. Accessing the monolayer form in a repeatable fashion, as part of a predictable and high-yield manufacturing process is critical to realizing the many potential applications of two-dimensional materials at scale. In order to fabricate devices made from few- or monolayer materials, layer(s) of material of specified size and shape, arranged in a pre-determined pattern, must be deposited on a desired substrate and conventional transfer methods include pressure-sensitive adhesives and other viscoelastic polymers and require applied pressure to adhere to their target which can cause out-of-plane deformations and problems with isolating and transferring the patterned few- or monolayer material. Deep etching has similar drawbacks.   UC Berkeley researchers have discovered methods and compositions that enable the transfer medium to adhere strictly to patterned regions, allowing the transfer to remove only patterned material and leave behind unpatterned bulk. This method involves the creation of an intermediate layer between the source material and the transfer medium. Because this layer must strictly cover patterned material, it serves as an etch mask for isolating few-layer material in the desired pattern. Any material which is microns-thick, patternable at the desired lateral pattern scale (likely micron-scale), and subsequently removable would make a suitable intermediate layer. 

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

  • Go to Page: