The eukaryotic ribosome is composed of 79 ribosomal protein – large (RPL) and ribosomal protein – small (RPS) subunit proteins that interweave with 4 highly structured RNAs (5S, 5.8S, 18S, and 28S rRNAs) to form the final translation-capable ribonucleoprotein. Thus, quantification of ribosome-associated RNA is highly similar to profiling of RNAs associated with other RNA binding proteins. We recently described the development of enhanced crosslinking and immunoprecipitation (eCLIP), a method to profile RNAs bound by an RNA binding protein of interest that showed thousand-fold improved recovery of protein-bound RNA [Van Nostrand et al 2016].
Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K, et al: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 2016, 13:508-514. https://pubmed.ncbi.nlm.nih.gov/27018577/
Researchers from UC San Diego have developed a new method to quantify translation rate of individual genes. This technology enables more accurate quantification of ribosome occupancy.
UC San Diego is seeking companies interested in developing new services/products utilizing this technology.
Patent Pending