This invention describes a first-of-a-kind methodology using micro- and nanofabrication techniques to create polymeric microscale devices that are asymmetrically coated with nanowires. The nanowire coating provides an inherent high-throughput, low-waste drug loading mechanism, enhanced cytoadhesion, and may potentially interact with epithelial tissue to enhance drug permeation.
Oral drug administration is the preferred route due to its low cost, ease of use, and high patient compliance. However, many therapeutics have low oral uptake, thereby requiring other routes of administration (e.g. intravenous injections), which can be less ideal. The major barriers to oral drug delivery are drug solubility, drug permeability, and drug degradation. This invention is meant to address all three barriers. The nanowire-coated microdevices are expected to enhance oral uptake of a wide range of drugs that currently have low oral bioavailabilities.
The device enhances oral drug delivery because of the following: (1) it binds to the lining of the gastrointestinal tract, thereby providing proximal drug release and prolonged drug exposure, addressing issues of solubility; (2) the planar shape of these devices coupled with their adhesive properties will allow for unidirectional drug release toward epithelial tissue, addressing issues of drug permeation; (3) the drug loaded onto the devices will be released in a sustained manner, decreasing exposure to harsh conditions of the gastrointestinal tract, thereby reducing drug degradation.
To develop & commercialize the technology as an oral drug delivery system.
Pre-clinical
Under CDA / NDA
Country | Type | Number | Dated | Case |
United States Of America | Issued Patent | 11,173,129 | 11/16/2021 | 2015-082 |
United States Of America | Issued Patent | 10,596,125 | 03/24/2020 | 2015-082 |
Nanotechnology, Nanomaterials, Oral drug delivery, Microdevice