Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Delivery Systems

Categories

[Search within category]

Endoscopic ultrasound-guided fine needle injection

Endoscopic ultrasound-guided Fine Needle Aspiration (EUG-FNA) is a method by which tissue biospies are collected using a needle tip guided by real-time ultrasound imaging. UCI physicians propose a novel utility for EUS-FNA with enclosed fine needles that would allow the sterile injection of dyes, drugs and therapeutics to specific anatomical sites.

Novel Methods for Studying Ceramide In Vivo and Inducing Ceramide-Induced Apoptosis

Mammalian cells synthesize thousands of distinct lipids, yet the function of many of these lipid species is unknown. Ceramides are a chemically diverse class of sphingolipids that have critical roles in a wide range of biological pathways, but poor cell permeability and lack of selectivity in endogenous synthesis pathways have hampered direct study of their effects. Despite their high biological interest, ceramides have been difficult to study because of their impermeability to the cell membrane.

In Vitro Reconstituted Plant Virus Capsids For Delivering Rna Genes To Mammalian Cells

UCLA researchers in the Department of Chemistry & Biochemistry have developed a method for using in vitro reconstituted plant virus-derived vectors to package and deliver RNA genes for targeted delivery of vaccines, MRI contrast agents, and therapeutic proteins in RNA form.

Massively Parallel High Throughput Single Cell Electroporation (MSEP)

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel massively parallel, single cell electroporation platform (MSEP) that is high throughput, efficient, and maintains cell viability.

Preventative Trackable Anticoagulants for Atrial Fibrillation Treatment

Researchers at the University of California, Davis have developed a process to localize anticoagulation drugs for treatment of inflammation and atrial fibrillations.

Metabolite-Responsive Hybrid Biomaterials

Researchers have developed a “smart” biomaterial for drug delivery systems capable of responding to signature cancer metabolite concentrations in tumor environments. This response triggers the release of encapsulated drugs at a specific tumor target.

Protein Nanoparticles For Cancer Immunotherapy

Though new therapeutics for the treatment of cancer are constantly being developed, they often show low efficiency for long-term remission, adverse side effects, and low immune response. Scientists at UCI have found a way to combat these issues with a combination therapy delivered by nanoparticle of both a vaccine, to prime the immune system, and a checkpoint inhibitor to shut down anti-cancer immune responses. This has been shown to prolong survival and promote immune response and immunological memory related to long-term survival.

Use of a Radiation Detector that Combines Virtual Frisch Grid and Cerenkov Readouts

Researchers at the University of California, Davis have developed a radiation detector for high energy photons that employs a transparent semiconductor with a high index of refraction to combine benefits of Virtual Frisch Grid devices and the readout of Cerenkov light.

Method For Temporal And Tissue-Specific Drug Delivery And Induced Nucleic Acid Recombination

UCLA researchers in the Department of Medicine have developed a novel method for tissue-specific drug delivery via a nanoparticle system.

Trehalose Hydrogels For Stabilization And Delivery Of Proteins

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel trehalose hydrogel to help stabilize proteins for drug delivery.

Sustained Intracellular RNA Delivery and Expression

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method for high protein expression levels, in situ, involving RNA-based therapeutics.

Process For Reducing Sizes Of Emulsion Droplets

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of reducing sizes of droplets in multiple emulsion systems.

Nanoparticles For Specific Detection And Killing of Pathogenic Bacteria

UCLA researchers in the Department of Chemistry and Biochemistry and Department of Medicine have developed novel functionalized mesoporous silica nanoparticles that can specifically identify pathogenic bacteria and deliver on-target drug treatments.

Systems And Methods For Therapeutic Agent Delivery

UCLA researchers at the Department of Physics have developed a system that is capable of delivering a therapeutic agent to a specifically targeted tissue using ultrasound.

Methods Comprising Immune System Modulation With Microporous Annealed Particle Gels

UCLA researchers have developed a novel microporous annealed particle (MAP) scaffold that acts as both a tissue growth scaffold and an immune modulatory system. The technology permits continuous, time-encoded, modulation of the immune system delivered injection/implantation of fabricated scaffold, comprised of the MAP gel technology.

Disulfide Bioconjugation

UCLA researchers in the Department of Chemistry and Biochemistry have proposed a one-step radical mechanism for disulfide bioconjugation that overcomes many concerns associated with the free cysteine residues that result from current bioconjugation techniques.

Bacteriotherapy against Propionibacterium Acnes for the Treatment of Acne Vulgaris

Reduction in Propionibacterium acnes (P. acnes) survival correlates with clinical improvement of acne in patients. Systemic antibiotics have been used to treat acne for several decades and are still widely prescribed for acne patients. Topical antibiotics are also helpful, and the oxidizing agent benzoyl peroxide (BPO) has been one of the most frequently used topical medications for acne treatment. Topicals are often used as the first line treatment for patients suffering from mild to moderate acne. However, current antibiotic treatments have major drawbacks. Systemic antibiotics nonspecifically disrupts microbial ecosystem and promote antibiotic resistance. Topical antibiotics are very poor at killing P. acnes on the skin surface, therefore there is a current need for alternative methods for treatment.

Preparation Of Functionalized Polypeptides, Peptides, And Proteins By Alkylation Of Thioether Groups

UCLA researchers in the Departments of Chemistry, Physics, and Bioengineering, led by Dr. Tim Deming of the Bioengineering Department, have developed new methods for adding different functional groups on polypeptides.  The UCLA researchers have used this method to create a platform to create and modify nanoscale vesicles and hydrogels for use in nanoscale drug delivery particles, injectable drug depots, imaging and detection, industrial biomaterials, and wound management.

Combination Therapy Approach Using Novel Biguanides For Cancer Treatment

Researchers in the UCLA Departments of Molecular and Medical Pharmacology, Chemistry and Biochemistry, Surgery, and Medicine have developed novel metformin analogues which, when combined with immune checkpoint inhibitors, enhance the therapeutic benefit of these inhibitors in treating triple-negative breast cancer and other malignancies.

Endogenous Human Protein Nanoparticle-Based Immune-Focusing Antiviral Vaccine

UCLA researchers in the Department of Biological Chemistry have developed a novel nanoparticle based antiviral vaccine capable of targeting many viruses.

New Form Of Hybrid Materials

Advances in science are driven by new discoveries which can pave the way to new create new research directions. For example, crystals by the nature of their order in three-dimensional space, cannot flex or expand, but with the integration of macromolecular ferritin crystals with hydrogel polymers can change their dimensions.

Amphiphilic Derivatives Of Thioether Containing Block Copolypeptides

UCLA researchers in the Department of Bioengineering have developed a new method to generate amphiphilic block copolypeptides.

Chemoselective Side-Chain Modifications Of Methionine-Containing Elastin-Like Polypeptides

UCLA researchers in the Department of Bioengineering and Department of Chemistry & Biochemistry have developed a novel method for the introduction of various functional groups onto recombinant elastin-like polypeptides (ELPs), creating new compositions of ELPs that may be used for medical therapeutic or diagnostic applications.

Thaw Gelation Process for Encapsulating Cell Spheroids

Researchers at the University of California Davis have developed a thaw gelation process for the formation of cell spheroids within a hydrogel shell.

  • Go to Page: