Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Medical > Delivery Systems

Categories

[Search within category]

Minimally Invasive Percutaneous Delivery System for a Whole-Heart Assist Device

Researchers at UCI have developed a minimally invasive mechanism to help deliver and implant a cardiac assist device inside the body to help patients with heart failure.

(SD2020-497) Light-activated tetrazines enable live-cell spatiotemporal control of bioorthogonal reactions

Bioorthogonal ligations encompass coupling chemistries that have considerable utility in living systems. Among the numerous bioorthogonal chemistries described to date, cycloaddition reactions between tetrazines and strained dienophiles are widely used in proteome, lipid, and glycan labeling due to their extremely rapid kinetics. In addition, a variety of functional groups can be released after the cycloaddition reaction, and drug delivery triggered by in vivo tetrazine ligation is in human phase I clinical trials. While applications of tetrazine ligations are growing in academia and industry, it has so far not been possible to control this chemistry to achieve the high degrees of spatial and temporal precision necessary for modifying mammalian cells with single-cell resolution.

Multiplex Epigenetic Editing using a Split-dCas9 System

Researchers at the University of California, Davis have developed a new epigenetic editing system that overcomes packaging limitations of viral delivery systems and can be used for multiplexed epigenetic editing of a genome.

2-D Polymer-Based Device for Serial X-Ray Crystallography

Researchers at the University of California, Davis have developed a single-use chip for the identification of protein crystals using X-ray based instruments.

Digital Droplet Infusion System for High-Precision, Low-Volume, Delivery of Drugs or Nutritional Supplements

Researchers at the University of California, Davis have developed the first, digital, droplet infusion system capable of high-precision delivery of very low-volume therapeutics or nutraceuticals.

Optimized Virus-like Particles for Cas9 RNPs & Transgene/HDR Template Delivery

The inventors have developed optimized methods for using virus-like particles for the co-delivery of Cas9 ribonucleoprotein complexes and: a lentiviral genome that encodes a large transgene, such as a chimeric angtigen receptor (CAR) transgene a lentiviral genome that does not encode a sgRNA expression cassette a method for nucleofecting VLPs + homology directed repair (HDR) donor template together to enhance HDR in treated cells  

Treatment Of Inherited Retinal Disease

Researchers at UCI have developed a method of treating inherited retinal diseases, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa, by gene therapy of the RPE65 nonsense mutation. This method uses base editor-mediated genome-editing by viral delivery and lead to improved patient treatment through enhanced editing of single base pairs and reduced off-target genomic editing.

Electric Ratchet Based Ion Pumps

UCI researchers developed a new device that uses electricity to drive ion separation across a membrane. This device can increase the energy efficiency of various applications such as artificial photosynthesis, water desalination, and chemical separations.

Percutaneous Heart Valve Delivery System Enabling Implanted Prosthetic Valve Fracture

UCI researchers developed a percutaneous heart valve delivery system to deliver and implant a prosthetic valve. This system incorporates the means to fracture a previously implanted prosthetic valve in situ without interfering with the transcatheter valve to be implanted.

Intranasal Delivery of Oligonucleotides for Neurodegenerative Diseases

Delivery of oligonucleotide therapy to the central nervous system remains challenging. Neurodegenerative diseases, such as Huntington’s disease and Spinal Muscular Atrophy, can require intrusive and regular treatments, therefore a non-invasive delivery system would be very beneficial to patients. UC Irvine researchers have proposed a new method of therapeutic delivery utilizing a SARS-CoV-2 pseudovirus. Delivered intranasally, this system has the ability to bypass the blood brain barrier, making it an exciting approach to decrease risk for patients and ease the treatment process.

Novel Tunable Hydrogel for Biomedical Applications

Prof. Huinan Liu’s lab at the University of California, Riverside has developed a novel tunable hydrogel that achieves tunable crosslinking, reversible phase transition, and may be used as a 3DP scaffold. This new hydrogel utilizes dynamic coordination of its innate carboxylic groups and metal ions. Adding methylacrylate or other functional groups is not required for this technology and the resulting hydrogel is less toxic. Since the functionalization of this hydrogel is not required, it is less process-intensive and results in a more cost-effective hydrogel.  In addition, the UV curing is no longer needed since methylacrylate is no longer utilized to crosslink the hydrogel.   Fig 1: Optical micrographs of top view and cross-section of HyA hydrogels printed using cold-stage method and direct writing method. Hydrogels printed using direct writing method showed better structural integrity and stability.

Hemoglobin Carrying PEG Microspheres As Artificial Red Blood Cells

Researchers at the University of California, Irvine have developed artificial red blood cells consisting of hemoglobin that is tethered to polyethylene glycol (PEG) molecules and formed into microspheres.

Insulin Infusion Cannulas with Superior Performance

Researchers at UCI have developed the application of a biocompatible material to insulin infusion devices for Type 1 Diabetes to improve device strength, reduce scar tissue buildup, and increase the efficiency of insulin delivery.

Novel Drug Delivery Platform

This invention is a novel method for synthetically designing protein carriers (enFoldin) for small molecules.  

Non-Antibiotic, Treatment for Recurrent UTIs in Canines

Researchers at the University of California, Davis have developed a biologic treatment for mitigating pain and treating acute urinary tract infections (UTIs) in canines.

Bioengineered RNA Molecules for Cancer Therapy

Researchers at the University of California, Davis have developed a method to use biologic RNA molecules for cancer research and therapy.

Bioengineered Let-7c Therapy for HCC Treatment

Researchers at the University of California, Davis have developed a bioengineered, RNA-based treatment for advanced liver cancer and hepatocellular carcinoma (HCC).

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Antimicrobial and Osteoinductive Hydrogel for Dental Applications

UCLA researchers in the Department of Chemical & Biomolecular Engineering developed osteoinductive and antimicrobial hydrogel adhesives for dental applications.

A New Cell-free Protein Expression System with three-fold higher protein yield in batch and continuous mode than existing systems

Researchers at the University of California, Davis have developed a method for preparing a bacterial cell lysate that results in higher protein expression than existing cell-free systems. The new whole-cell lysate system comes with additional advantages, including the ability to synthesize protein from linear DNA, directly amenable to continuous or flow-based reaction, and compatibility with existing manufacturing workflow.

Adenylyl Cyclase Catalytic Domain Gene Transfer for Heart Failure

Heart failure (HF) is a disease of epidemic portions in the United States affecting over 6 million patients with heart failure in the US, with 400,000 new cases per year. It is the most common cause of non-elective admission to the hospital in subjects 65 yrs and older. The introduction of new drugs over the last 30 years that target pathways critical to progression of HF, along with implantable cardiac defibrillators and resynchronization devices have shown some successes, however, both the morbidity and mortality associated with heart failure remains at unacceptable levels, with as many as 30-40% of affected individuals dying within 5 years of diagnosis. Recently, preclinical and clinical trials have tested gene transfer to increase left ventricular (LV) function, especially in heart failure with reduced ejection fraction.

Use of Gene Therapy to Treat Joint Disease and Synovial Tumors

The National Center for Advancing Translational Sciences and Genetic and Rare Diseases Information Center characterizes Pigmented villonodular synovitis (PVNS) as a rare disease estimated to occur in ~ 5-6 people out of 100,000. This locally invasive tumor most often occurs in younger adults and causes severe damage to joints. The first line of treatment is surgery but at least 50% of patients require multiple surgeries over many years due to re-growth of the tumor.

  • Go to Page: