Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Biotechnology > Other

Categories

[Search within category]

High-Efficiency One-Cell-One-Bead Encapsulation In Droplets

A high-efficiency single-cell droplet encapsulation method to improve single cell pharmacological assay throughput.

Scalable Manufacturing Of Superhydrophobic Structures In Plastics

Superhydrophobic surfaces that repel liquid have found a multitude of applications due to their self-cleaning and antibacterial effects, but are often highly surface selective and difficult to produce. Researchers at UCI have developed a new method to reliably mass produce universal superhydrophobic surfaces in a simpler and more cost effective manner.

Drift-Free and Calibration-Free Measurement of Analytes

A method of achieving the calibration- and drift-free operation of voltammetric electrochemical biosensors.

Bacteria from Medicago Root Nodules as Potentialy Useful PPB (Plant Probiotic Bacteria) for Agriculture

UCLA researchers in the Department of Molecular, Cell, and Developmental Biology have discovered new species of plant probiotic bacteria to enhance plant growth for agricultural purposes.

Non-Invasive Bladder Volume Sensing Device

Researchers at the University of California, Davis have developed an apparatus and methods for non-invasive bladder volume sensing, to determine when a patient’s bladder is full.

A Way to Genetically Silence Calcium Signaling in Cells and Organisms and Derivates Thereof

UCLA researchers in the Department of Physiology have developed a method of genetically silencing calcium signaling in cells and organisms for use in studying aberrant calcium signaling in disease.

Wireless In Situ Sensors in Stents for the Treatment and Monitoring of Chronic Obstructive Lung Disease (COPD)

UCLA researchers in the Department of Electrical Engineering have developed a novel wireless sensor for external and internal biosensing applications.

Exercise Promotion, Measurement, and Monitoring System

UCLA researchers in the Department of Electrical Engineering have developed a novel wireless sensor and exercise system for real-time exercise promotion and monitoring.

Bispecific Antibodies for Detection and Treatment of Cancers Associated with EGFR Overexpression

This invention identifies novel bispecific antibodies that can be used to detect and/or treat various cancers that overexpress EGFR family of proteins.

Polyketide Synthase Variants And Uses Thereof

Polyketide synthases are multifunctional enzymes that catalyze the biosynthesis of polyketides. These enzymes make attractive targets because they can be modified to produce commodity chemicals. The invention herein describes methods for producing polyketide synthase variants whose activity and/or substrate specificity can be tailored. An example of a polyketide synthase variant would be 2-pyrone synthase, which produces 2-pyrone. Other modified synthase variants can be generated to produce other key materials including ketides, lactones, etc.

Drift-Free, Self-Calibrated Interrogation Method For Electrochemical Sensors Based On Electron Transfer Kinetics

A new method using chronoamperometry in place of voltammetry to obtain data from electrochemical sensors, including electrochemical biosensors.

Efficient Induction of Haploid Plants

Researchers at the University of California, Davis have developed an efficient technique for the haploid induction of plants.

Novel Inhibitors of Mitochondrial Electron Transport

Researchers at the University of California, Davis have discovered a class of compounds that both bind to a unique newly-discovered binding site in respiratory complex III and act as inhibitors of electron transport for use as mitochondrial anti-cancer drugs.

Biologically Applicable Water-Soluble Heterogeneous Catalysts For Parahydrogen-Induced Polarization

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of parahydrogen-induced polarization in water using heterogeneous catalysts.

Determination Of Absolute Configuration Of Secondary Alcohols Using A Competing Enantioselective Conversion Kit

The absolute configuration of an organic compound dictates its interactions with other chemicals. The Competing Enantioselective Conversion (CEC) method is an attractive method for determining the absolute configuration of secondary alcohols, but the preparation of stock reagent solutions takes longer than the analysis time itself – a mere 1-2 hours. The inventors at UCI have developed a CEC kit which contains stock solutions of the components required for CEC that remain stable and usable for several months.

Energy Harvester From Breath-Associated Belly Movement

Researchers at UCI have developed a device that harvests enough energy from the human body to continuously power cells phones and other on-body devices.

High-Throughput And Label-Free Single Nanoparticle Sizing Based On Time-Resolved On-Chip Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a rapid, low-cost, and label-free methodology for nanoparticle sizing.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Process For Sorting Dispersed Colloidal Structures

Researchers from the Chemistry and Biochemistry department at UCLA have developed method of separating and/or sorting specific target structures from other non-target structures in a complex mixture using custom-made target-specific colloidal particles.

Process For Recycling Surfactant In Nanoemulsion Production

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method to separate and recycle surfactants used in the manufacturing of nanoemulsions.

A General Method For Designing Self-Assembling Protein Nanomaterials

UCLA researchers in the Department of Chemistry & Biochemistry have developed a novel computational method for designing proteins that self-assemble to a desired symmetric architecture. This method combines symmetrical docking with interface design, and it can be used to design a wide variety of self-assembling protein nanomaterials. 

Nucleic Acid Tetramers For High Efficiency Multiplexed Cell Sorting

UCLA researchers in the Departments of Medicine and Pharmacology have a highly specific method of sorting cells by using multiplexed tetramers with unique DNA-oligomer signatures.

Digital Droplet Microflowmetry Enabled By Interfacial Instability

Researchers at the University of California, Davis have developed a non-thermal, digital microfluidic flowmeter with the ability to measure ultralow flow rates.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

  • Go to Page: