Browse Category:


[Search within category]


Sucralose has become widely used as an artificial sweetener due in large part that it has low caloric content and is 600 times sweeter than table sugar (sucrose). Due to its resistance to metabolic degradation, sucralose can also be used as a marker for noninvasively assessing gastrointestinal small intestine or colonic permeability. This urinary marker is traditionally analyzed by time consuming and expensive methods, such as high performance liquid chromatography coupled to mass spectrometry or evaporative light scatter as the detectors. We have developed an alternative methodology of using a chemical-fluorescent technique for rapid analysis of halogenated disaccharides, such as sucralose.

Production of Glycolipid PEFAs from Yeasts

Method of using basidiomycetous yeasts to convert carbohydrates to glycolipid biosurfactants 

Building blocks for 3D, modular microfluidics

Researchers at the University of CA, Irvine have developed modular microfluidic platforms consisting of microfluidic building blocks that can be connected in various configurations to construct complete microfluidic devices for different applications.

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

Dual-Labeled E-AB Platform for Continuous, Real-Time Monitoring of Small Molecules

A dual-reporter correction to enhance the performance of electrochemical aptamer-based sensors in whole blood.

Microfluidic Pressure Regulator For Robust Hydrogel Loading Without Bursting

This invention is aimed at controlling the pressure in 3D cell cultures. It consists of a combination of microfluidic channels, which surround the extracellular matrix (ECM), tunable pressure-regulated valves, which activate when a threshold pressure is reached in the ECM, and a repository, to direct excess gel away from the cell culture if the threshold pressure is exceeded. It can prevent leakage of gel between adjacent cell cultures in high-throughput arrays and is compatible with various cell culture materials and injection equipment.

C3d-binding Biomarkers for Detection of Complement-mediated Inflammation

Background: The complement immune system is implicated in many acute and chronic inflammatory conditions and autoimmune diseases, including neurological (Alzheimer’s and multiple sclerosis), renal (lupus nephritis and glomerulonephritis), ocular (age-related macular degeneration), and systemic (lupus and rheumatoid arthritis). The complement protein C3d resides covalently attached in inflamed tissues, and it is an excellent biomarker target for complement-mediated inflammation, even at early disease stages prior to clinical manifestations.  Brief Description: UCR researchers have discovered several small chemical compounds with intrinsic fluorescence properties that bind to complement C3d. These compounds can serve as molecular biomarkers for the detection of complement activation using fluorescence imaging. The compounds can be developed to become noninvasive in vivo diagnostics of complement-mediated inflammatory and autoimmune diseases, for spatiotemporal monitoring of disease progression, and for delivering therapeutics to sites of inflammation.

Screening Platform for Anti-influenza Drugs

In addition to their protective functions as lubricants and physical and immunologic barriers, recent work has demonstrated that mucins also provide protection from influenza virus infection by presenting decoy ligands for the virus. In airway passages, target glycans on airway cells are covered with a thick layer of mucus containing dense array of glycosylated proteins (mucins). However, most screens are either overly simplified (and therefore not representative of the natural mucin barrier) or not translatable to a high-throughput platform. Hence, the development of a useful high throughput drug screening method has been hindered by the inability to streamline the process of replicating the complex environment that airborne invaders naturally confront.

Combined Optical Micromanipulation & Interferometric Topography

Background: Optical tweezers (OTs) is a commonly used light-based technology with a broad range of applications in studying mechanobiology. While OTs are capable of making force measurements at the pico-Newton level, they cannot be used to provide size and structural information on the object being investigated. The platform technology developed at UCR provides simultaneous measurements of force and physical dimensions. Currently, many leading manufacturers for nanoanalytic instruments are expanding their operations in North America and Asia to support the growth of its application in the scientific community.   Brief Description: UCR researchers have developed COMMIT, an all-optical platform, by combining optical tweezers and a novel microscopy method. COMMIT allows for simultaneous measurement of nano-sized objects and pN forces. Existing methods call for fluorescent labels and lack high resolution in imaging. This platform facilitates dynamic measurement of transient nanomechanical properties of cells in real-time.

Technology For Sustaining Pluripotency And Improved Growth Of Stem Cells In Culture

Background: Pluripotent stem cells (PSC) have tremendous potential in regenerative medicine, cell therapy, and drug/toxicant screening, and can increase our understanding of the pathogenesis and treatment of disease. The stem cell industry has accelerated annual growth projections of 20% by 2020. Overall, there is growing demand for culture media that can support rapid growth, survival, and sustain pluripotency of stem cells. Brief Description: UCR researchers have developed a novel, non-toxic biological compound that can be added to any culture medium to prevent unwanted differentiation. Compared to the standard commercial media currently used in PSC laboratories, this compound produces major improvements in cell quality, cell growth and maintenance of pluripotency during repeated passaging. Additionally, regulatory groups categorize stem cell therapy as an orphan drug, thereby allowing accelerated approval.

Sensitive, Specific Ratiometric Fluorescence-based DNA Detection

Fluorescent silver nanoclusters for nucleic acid detection. 

Cell Membrane-cloaked Nanofibers Promote Cell Proliferation and Function

Cloaking of synthetic structures with natural cell membranes has emerged as an intriguing strategy for presenting natural cell surface antigens and functions in the context of synthetic compositions with designed functions. Early forays into the field focused primarily on the development of cell membrane-coated spherical nanoparticles. While a boon to material sciences, such spherical structures cannot address the full spectrum of potential applications and the application of cell membrane cloaking techniques to nanofibers enables drastically different characteristics and applications.

3D Printed Artificial Micro-Fish

With recent advances in nanoscience and nanomanufacturing technologies, the areas of biomimetic micro-robotics and nanomotors have seen rapid development in realizing functionalities mimicking natural organisms with self-propulsion. The capability to fabricate complex architectures and miniaturize the dimension is highly desired for designing and customizing more functionalized, integrated and intelligent micromachines for different applications. In light of these challenges, rapid 3D optical printing offers a promising alternative for efficiently manufacturing controllable microswimmers with complex 3D microscale structures composed of patterned heterogeneous materials as well as different functional components.

Synthesis of Lipobactins and Teixobactin Analogues – New Antimicrobial Compositions against Gram-Positive Bacteria

With the discovery of penicillin in the 1940’s, many scientists proclaimed the defeat of infectious diseases which had plagued mankind. However, the remarkable healing power of antibiotics unfortunately invited widespread and indiscriminate use of antibiotics. This misuse and overuse of antibiotics has led to the dramatic rise in antibiotic resistant bacterial strains and increased healthcare costs.

Novel cyanobacteriochromes responsive to light in the far-red to near-infrared region

Researchers at the University of California, Davis have identified new cyanobacteriochromes (CBCRs) that detect and fluoresce in the far-red and near-infrared region of the electromagnetic spectrum.

System and Methods to Track Single Molecules

Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment, plus it is difficult to see spatial and temporal features, such as signal transduction events at the cell surface or on intracellular compartments, with single molecule resolution. To address these problems, researchers at the University of California, Berkeley, have developed the PhotoGate device and methods in order to control the number of fluorescent particles in a region of interest. By deploying PhotoGate and applying patterned photobleaching, they have demonstrated the tracking of single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. Additional experimentation enabled the observation of ligand-induced dimerization of epidermal growth factor receptors on a live cell membrane, and also measurements of the binding and the dissociation rate of single adaptor protein from early endosomes in the crowded environment of the cytoplasm. The innovative approach enables tracking of single particles at high spatial and temporal resolution, and for mapping of molecular trajectories, as well as determining complex stoichiometry and dynamics, and drives the art towards video-rate imaging of live cells with molecular (1–5 nm) resolution.

An Integrated Microfluidic Platform For Size-Selective Single-Cell Trapping

Researchers at the University of California, Irvine have developed a fully integrated microfluidic platform that is configured to separate and isolate single cells. The invention uses hydrodynamic filtration to isolate targeted cells of various sizes. Once the single cells are isolated and sorted, they can be studied individually in a purer state free from other contaminating or unwanted cells. The system does not use biochemical “labels” to identify target cells. It is a label-free separation technique.

An Optical System for Parallel Acquisition of Raman Spectra from a 2-Dimensional Laser Beam Array

Researchers at the University of California, Davis have developed a method for acquiring Raman spectra from a plurality of laser interrogation spots in a two-dimensional array. This method can be used for parallel analysis of individual cells or for fast chemical imaging of specimens.

Hemostatic Compositions And Methods Of Use

Wet layered clays used as hemostatic agent to promote blood clotting.

Oxides for Wound Healing and Body Repair

A homogeneous composition of oxide materials prepared to modulate hemostasis and facilitate the blood coagulation, accelerating bone generation and assisting in wound healing and tissue repair.

Mesocellular Oxide Foams as Hemostatic Compositions and Methods of Use

Mesocellular foams used as hemostatic agents to facilitate clotting, wound healing, and reduce the risk of infection. It can be provided in combination with antibiotics, ions, or anti-inflammatory agents.

Predicting Weight Loss And Fat Metabolism Using Optical Signal Changes In Fat

Researchers at UCI have developed a novel use of an emerging functional imaging technology, Diffuse Optical Spectroscopic Imaging (DOSI), for monitoring changes in subcutaneous adipose tissue (“AT” also known as “fat” tissue), structure and metabolism during weight loss. Changes in subcutaneous adipose tissue structure and metabolism have been shown to correlate with the development of obesity and related metabolic disorders. The invention is a diagnostic tool that assesses the structure and function of fat tissue in vivo.

Preparation of Furan Fatty Acids from 5-(Chloromethyl) Furfural

Researchers at the University of California, Davis have developed a novel, efficient route to a new class of dietary supplements with antioxidant, anti-inflammatory, and possible cardioprotective properties.

Delivery Module for Delivering Biotherapeutics Throughout the Body

Researchers at the University of California, Davis have developed a robust and broadly applicable system for the delivery of peptide and oligonucleotide biotherapeutics.

Engineering Cannabinoid Production In Microbes And Plants

Cannabinoids are bioactive molecules naturally produced by the plant Cannabis sativa as a mixture of 70 different structural analogs. Due to their potent pharmacological properties, there is increasing interest in using cannabinoids to treat diseases (e.g., multiple sclerosis and chronic pain) and alleviate ailments (e.g., vomiting and nausea as well as appetite loss). Pure cannabinoid compounds are needed; however, because of similar molecular compositions of these compounds, purification of such compounds from plants is a difficult undertaking.   Researchers at UC Berkeley and LBL have developed genetically modified host cells that produce cannabinoid compounds or cannabinoid precursors and also methods of synthesizing such compounds or precursors.  The invention achieves high titer bioconversion of simple sugars to known and potentially novel cannabinoids by metabolic engineering of heterologous hosts.

  • Go to Page: