Browse Category: Biotechnology > Other

[Search within category]

Microbial-Induced Barriers To Striga Parasitism

Researchers at the University of California, Davis have discovered an Arthrobacter bacterial strain that promotes suberization of the endodermis in sorghum roots. Suberin, a poly-fatty acid polymer, acts as a physical barrier in sorghum roots, helping to prevent infection by the parasitic plant Striga hermonthica, a significant threat to sorghum production. These microbial-based solutions offer a cost-effective and easily deployable strategy to manage Striga infection in the predominantly smallholder farmer-driven sorghum cultivation of sub-Saharan Africa.

"Incubator-Free" Vessels For Cell Culture Which Do Not Use An Air Intermediate For Gas Regulation

Cell culture plates are an essential tool for cell biology research. They are used to grow cells in a controlled environment, which allows for study of the effects of different conditions on cell growth and development. The plates are typically made of plastic or glass and may have one or more wells, each of which can hold a small amount of cell culture media. The media provides the cells with the nutrients the cells need to grow and divide. Cell culture plates may be used in incubators to grow cells in a controlled environment as well as in glove boxes. The incubator provides the cells with the necessary conditions for growth, including a constant temperature, humidity, and atmosphere.Conventional cell culture plates are susceptible to evaporation, which causes increased osmolarity of cell culture media. This in turn causes unnatural growth of cells and well-to-well variability due to uneven evaporation. In addition, evaporation causes increased concentration of the salts involved in electrical signaling of electrically active cell types, changing the ionic gradients across the cell membrane, and affecting all characteristics of the initiation, transmission (and computation) in electrically active cells such as cardiac or neuronal cells. It is also difficult to maintain desired dissolved gas concentration with standard cell culture plates. This generally requires use of a compressed gas system, which uses gas regulators, sensors that are expensive and have limited lifetimes, and feedback control as well as a glove box for culture and/or handling.An incubator is used to maintain the desired temperature of the cell culture plates. The incubator impedes access to the cultures for feeding, for microscopy, etc. Furthermore, observation equipment for use inside an incubator needs to be designed to resist incubator conditions (e.g., body temperature heat and humidity). Incubators also take up significant space and packing of incubators in a laboratory is space-inefficient relative to the form factor of the cell culture plates. As the number of cell culture plates in a single incubator increases, the ability of the incubator to perform its function decreases, since there is a minimum number of times an incubator may be accessed per week per cell culture vessel. However, every time the incubator is accessed, it is unable to perform its functions for a prolonged period of time, e.g., over 30 minutes. Another technical problem is that cell culture devices that use an air gap for gas exchange have an increased risk of microbial contamination via that air gap. This makes it difficult to perform manual cell culture experiments over the course of months without contamination. In addition, cross-contamination is more likely if multiple different experiments are being performed in the same laboratory. Thus, there is a need for cell culture vessels and systems that overcome these problems.

O-Acetyl Glycosphingosines and Gangliosides, as well as Their N-Acetyl Analogs

Researchers at the University of California, Davis have developed a technology providing the creation of stable analogs of glycosphingosines and gangliosides containing O-acetylated sialic acid for extensive biological and medical applications.

Droplet microvortices for modulating cell dynamics

The invention presents a microfluidic platform equipped with specialized trapping arrays and droplet generation capabilities, enabling precise control over the formation of microvortices within cell-laden droplets. This novel system facilitates the study of cell-cell interactions at a single-cell level, offering configurable microenvironments for analyzing cell dynamics and pair relationships.

New Sulfoxide-Containing MS-Cleavable Cross-Linker for Proteomics

An innovative sulfoxide-containing MS-cleavable cross-linker, DBrASO, specifically designed for cysteine residues and aimed at enhancing protein-protein interactions studies and protein complexes architecture analysis.

New Cross-Linking Mass Spectrometry Platform: SDASO-L, SDASO-M, and SDASO-S

An innovative mass spectrometry platform that utilizes sulfoxide-containing MS-cleavable heterobifunctional photoactivated cross-linkers to enhance protein structural elucidation.

Compositions And Methods For Wound Healing

A breakthrough technology using insulin-secreting cells and stem cells to enhance wound healing and reduce scar formation.

High throughput and precision cell sorting

A novel method and device for high-throughput sorting of cells in suspension, particularly focusing on the separation of key cellular blood components of the immune system. The patent application presents a novel approach to high-throughput cell sorting, particularly suitable for applications in medicine and biotechnology where precise separation of cell populations is crucial.

Lab-on-a-chip microfluidic microvalves

A design for compact and energy-efficient microvalves for use in lab-on-a-chip microfluidic devices

Substrate And Process Engineering For Biocatalytic Synthesis And Facile Purification Of Human Milk Oligosaccharides (HMOs)

Researchers at the University of California, Davis have developed an innovative method for efficient, high-yield production and easy purification of Human Milk Oligosaccharides (HMOs) using a Multistep One-Pot Multienzyme (MSOPME) process.

Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates

Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins

Add-Seq: Quantitative Genome-Wide, Single-Molecule, And Long-Range Nucleosome Profiling

In cells, DNA is organized by wrapping DNA strands around histone proteins, creating protein-DNA complexes called nucleosomes which comprise the basic unit of chromatin. Chromatin is associated with regions of low gene expression, as compacted DNA is inaccessible to proteins that would promote transcription. Conversely, regions in the DNA not bound by histones experience higher gene expression, as this DNA is readily available to be transcribed.  Nucleosomes are not uniformly positioned on a DNA molecule, and they change based on factors like which genes are expressed during different cellular processes. It is beneficial to understand where nucleosomes are positioned, as this can provide insight into how genes are regulated, or how factors like epigenetic modifications or chromatin structure affect this accessibility and can additionally illuminate gene expression patterns in disease for designing therapies. Nucleosome profiling is a technique used to study the positions of nucleosomes along a DNA molecule. Typically, histones are crosslinked to DNA, then the DNA is fragmented and digested leaving only regions protected by nucleosomes left for short-read sequencing. However, this fragmentation only reveals nucleosome positioning at the resolution of a few hundred base pairs, leaving the larger genomic context of these nucleosome positions to be desired. To address this, researchers at UC Santa Cruz developed Add-SEQ, a pipeline using long-read nanopore sequencing to map nucleosomes across long stretches > 10 kb of single DNA molecules.

System For Continuous Mutagenesis In Vivo To Facilitate Directed Evolution

This invention overcomes a limitation of in vivo mutagenesis systems. Some methods of mutagenesis involve treatment of plasmids with mutagenic chemicals or UV light prior to transformation, but these result in biased mutation spectra. Use of error prone DNA polymerases produces a more random set of mutations, but the rate of mutagenesis rapidly declines with continuous culture. As a result, using such polymerasaes separates mutagenesis and selection into multiple steps. Mutant genes in plasmids need to be generated by the error prone polymerase, then the plasmids isolated into libraries and selected in a separate step. What is needed, then is an error prone DNA polymerase that does not result in a decline in the rate of mutagenesis in culture.  

Methods for Determining Base Locations in a Polynucleotide

An abasic site (i.e., an apurinic or apyrimidinic site) in a DNA or RNA strand is one in which the base is not present, but the sugar phosphate backbone remains intact. UC Santa Cruz researchers discovered that nanopore sequencers can readily detect the positions of abasic sites within a DNA strand during sequencing. This invention capitalizes on this discovery by using enzymes to generate abasic sites at places on a DNA strand that contain modified bases. The DNA strand can then be sequenced using nanopore sequencing, thereby providing a way of detecting modified bases.

Microbial Production Of Antimicrobial Rhammolipid Esters

Rhamnolipids (RLs) are a class of bacterially produced biosurfactants that possess antimicrobial as well as surface-active properties. While RLs have broad utility in industry as antimicrobial biosurfactants, their anionic nature limits the efficacy of these molecules in certain applications. Alternatively, rhamnolipid esters (RLEs) exhibit improved properties as nonionic surfactants. However, a major challenge in RLE application in the commercial arena is that, to date, they are only reliably accessed via chemical synthesis, a costly and unsustainable approach.To address this problem, UC Berkeley researchers have developed a novel, reliable microbial source for biosynthesized RLEs enabling their production in an efficient, sustainable, and renewable manner. Additionally, three novel rhamnolipid methyl ester (RLME) congeners have been produced and a new enzyme for RLE production identified. The produced RLEs are expected to be more effective than RLs in many ways, including antifungal activity and hydrocarbon solubilization.

Cloud-Based Cardiovascular Wireless Monitoring Device

Cardiovascular disease is the leading cause of death both worldwide and in the United States, with associated costs in the U.S. reaching approximately $229 billion, each, in 2017 and 2018. Early detection, which can drastically reduce both rates of death and treatment costs, requires access to facilities and highly-trained physicians that can be difficult to access in rural areas and developing countries—despite their prevalence of cardiovascular disease. Computer-based models that use, e.g., PCG (phonocardiogram), EKG (electrocardiogram), or other cardiac data, are a promising route to bridge the gap in standard-of-care for these underserved areas. However, current algorithms are unable to account for demographic features, such as race, sex, or other characteristics, which are known to affect both the structure of the heart and presentation of heart disease. To address this problem, UC Berkeley researchers have developed a new, cloud-based system for collecting a patient's continuous cardiovascular data, monitoring for and detecting disease, and keeping a doctor informed about the cardiac health of the patient. The system sends an alarm when disease or heart attack are detected. To generate the most accurate diagnoses by taking into account demographic information, the system includes private and ethical dataset collection and model-training techniques.

Adaptive Machine Learning-Based Control For Personalized Plasma Medicine

Plasma medicine has emerged as a promising approach for treatment of biofilm-related and virus infections, assistance in cancer treatment, and treatment of wounds and skin diseases. However, an important challenge arises with the need to adapt control policies, often only determined after each treatment and using limited observations of therapeutic effects. Control policy adaptation that accounts for the variable characteristics of plasma and of target surfaces across different subjects and treatment scenarios is needed. Personalized, point-of-care plasma medicine can only advance efficaciously with new control policy strategies.To address this opportunity, UC Berkeley researchers have developed a novel control scheme for tailored and personalized plasma treatment of surfaces. The approach draws from concepts in deep learning, Bayesian optimization and embedded control. The approach has been demonstrated in experiments on a cold atmospheric plasma jet, with prototypical applications in plasma medicine.

Continuous Polyhydroxyalkanoate Production By Perchlorate Respiring Microorganisms

Plastics are essential for the modern world but are also non-sustainable products of the petrochemical industry that negatively impact our health, environment, and food chain. Natural biogenic plastics, such as polyhydroxyalkanoates (PHA), are readily biodegradable, can be produced more sustainably, and offer an attractive alternative. The global demand for bioplastics is increasing with the 2019 market value of $8.3B expected to reach a compound annual growth rate of 16.1% from 2020-2027 (https://www.grandviewresearch.com/industry-analysis/bioplastics-industry). However, current PHA production is constrained by the underlying physiology of the microorganisms which produce them, meaning bioplastic production is currently limited to inefficient, batch fermentation processes that are difficult to scale.To address this problem, UC Berkeley researchers have developed a new system for PHA production wherein the PHA are generated continuously throughout microorganism growth lifecycles. The invention allows these sustainable bioplastics to be produced via precision continuous fermentation technology, a scalable and efficient approach.

Polysaccharide A-Based Particulate Systems For Attenuation Of Autoimmunity, Allergy and Transplant Rejection

Researchers at the University of California, Davis have developed a customizable polysaccharide that can be added to nanoparticles to reduce their rejection by the human immune system.

Compositions and Methods Useful in Promoting Milk Production

The mammary gland is responsible for producing milk in mammals. Producing a milk supply involves significantly accelerated cell growth and differentiation. It is thought that alveologenesis, the process by which milk-producing alveoli are made, occurs when alveolar progenitor cells differentiate into milk-producing alveolar cells. Thus, promoting alveolar differentiation is important in increasing milk production. Various industries, such as the dairy industry, may be interested in increasing milk production generally or increasing milk production without the use of hormones.

Population-Based Heteropolymer Design To Mimic Protein Mixtures In Biological Fluids

Biological fluids are complex, with compositions that vary constantly and evade molecular definition. Nevertheless, within these fluids proteins fluctuate, fold, function, and evolve as programmed. Synthetic heteropolymers capable of emulating such interactions would replicate how proteins behave in biological fluids, individually and collectively, leading the way toward synthetic biological fluids. However, while there exist known monomeric sequence requirements, the chemical and sequence characteristics of proteins at the segmental level, rather than the monomeric level, may be the key factor governing how proteins transiently interact with neighboring molecules (and how biological fluids collectively behave). To address this opportunity, UC Berkeley researchers have developed a new process of heteropolymer design for protein stabilization and synthetic mimics of biological fluids. The process leverages chemical characteristics and sequential arrangements along protein chains at the segmental level to design heteropolymer ensembles as mixtures of disordered, partially folded, and folded proteins. In studies, for each heteropolymer ensemble, the level of segmental similarity to that of natural proteins determines its ability to replicate many functions of biological fluids, including: assisting protein folding during translation; preserving the viability of fetal bovine serum without refrigeration; enhancing the thermal stability of proteins; and, behaving like synthetic cytosol under biologically relevant conditions. Molecular studies further translated protein sequence information at the segmental level into intermolecular interactions with a defined range, degree of diversity and temporal and spatial availability.

(SD2022-092) Cannabinoid production

The implementation of ortho-quinone methide (o-QM) intermediates in complex molecule assembly represents a remarkably efficient strategy designed by Nature and utilized by synthetic chemists. o-QMs have been taken advantage of in biomimetic syntheses for decades, yet relatively few examples of o-QM-generating enzymes in natural product biosynthetic pathways have been reported. The biosynthetic enzymes that have been discovered thus far exhibit tremendous potential for biocatalytic applications, enabling the selective production of desirable compounds that are otherwise intractable or inherently difficult to achieve by traditional synthetic methods. Characterization of this biosynthetic machinery has the potential to shine a light on new enzymes capable of similar chemistry on diverse substrates, thus expanding our knowledge of Nature's catalytic repertoire.

  • Go to Page: