Browse Category: Biotechnology > Other

Categories

[Search within category]

Efficient Induction of Haploid Plants

Researchers at the University of California, Davis have developed an efficient technique for the haploid induction of plants.

Novel Inhibitors of Mitochondrial Electron Transport

Researchers at the University of California, Davis have discovered a class of compounds that both bind to a unique newly-discovered binding site in respiratory complex III and act as inhibitors of electron transport for use as mitochondrial anti-cancer drugs.

Biologically Applicable Water-Soluble Heterogeneous Catalysts For Parahydrogen-Induced Polarization

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method of parahydrogen-induced polarization in water using heterogeneous catalysts.

Determination Of Absolute Configuration Of Secondary Alcohols Using A Competing Enantioselective Conversion Kit

The absolute configuration of an organic compound dictates its interactions with other chemicals. The Competing Enantioselective Conversion (CEC) method is an attractive method for determining the absolute configuration of secondary alcohols, but the preparation of stock reagent solutions takes longer than the analysis time itself – a mere 1-2 hours. The inventors at UCI have developed a CEC kit which contains stock solutions of the components required for CEC that remain stable and usable for several months.

Energy Harvester From Breath-Associated Belly Movement

Researchers at UCI have developed a device that harvests enough energy from the human body to continuously power cells phones and other on-body devices.

High-Throughput And Label-Free Single Nanoparticle Sizing Based On Time-Resolved On-Chip Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a rapid, low-cost, and label-free methodology for nanoparticle sizing.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Process For Sorting Dispersed Colloidal Structures

Researchers from the Chemistry and Biochemistry department at UCLA have developed method of separating and/or sorting specific target structures from other non-target structures in a complex mixture using custom-made target-specific colloidal particles.

Process For Recycling Surfactant In Nanoemulsion Production

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method to separate and recycle surfactants used in the manufacturing of nanoemulsions.

A General Method For Designing Self-Assembling Protein Nanomaterials

UCLA researchers in the Department of Chemistry & Biochemistry have developed a novel computational method for designing proteins that self-assemble to a desired symmetric architecture. This method combines symmetrical docking with interface design, and it can be used to design a wide variety of self-assembling protein nanomaterials. 

Nucleic Acid Tetramers For High Efficiency Multiplexed Cell Sorting

UCLA researchers in the Departments of Medicine and Pharmacology have a highly specific method of sorting cells by using multiplexed tetramers with unique DNA-oligomer signatures.

Digital Droplet Microflowmetry Enabled By Interfacial Instability

Researchers at the University of California, Davis have developed a non-thermal, digital microfluidic flowmeter with the ability to measure ultralow flow rates.

Trademark: Flexible Fan Out Wafer Processing And Structure: Flextrate

UCLA researchers in the Department of Electrical Engineering have invented a novel biocompatible flexible device fabrication method using fan-out wafer level processing (FOWLP).

Label Free Assessment Of Embryo Vitality

Researchers at UC Irvine developed an independent non-invasive method to distinguish between healthy and unhealthy embryos.

Near-Infrared Fluorescent Probe for Monitoring Mitochondrial Membrane Potential

Prof. Hui-wang Ai and colleagues at UCR have developed a new near-infrared fluorescent MMP probe that provides a number of advantages over current probes. Due to its improved chemistry the new probe, named NIMAP, delivers high sensitivity given its high fluorescence contrast and low background fluorescence. It has optimal emissions (above 600 nm) for mammalian in vivo and in vitro studies and improved accumulation within mitochondria which improves its quantitative analysis possibilities. NIMAP is also extremely photostable and can be utilized to monitor MMP for an extended period. Given these properties, NIMAP may be a powerful tool for studying MMP and mitochondrial function in various biological settings.

Alpha1–2-Fucosyltransferase for Enzymatic Synthesis of Alpha1–2-linked Fucosylated Glycans

Researchers at the University of California, Davis have discovered an alpha1–2-fucosyltransferase that efficiently catalyzes the synthesis of alpha1–2-linked fucosylated glycans that can contain different internal glycans.

Organic Waste Material Treatment

A researcher at the University of California, Davis has developed a method for treating organic waste materials.

Transabdominal Fetal Blood Oximetry

Researchers at the University of California, Davis have developed a method and apparatus for clinical-grade transabdominal fetal blood oximetry.

Genetically Encoded Fluorescent Sensors for Probing the Action of G-Protein Coupled Receptors (GPCRs)

Researchers at the University of California, Davis have developed a genetically encoded fluorescent sensor toolbox for the probing of G-protein coupled receptors.

Culturing More Mature iPSC-derived Cardiac Myocytes

Researchers at the University of California, Davis have developed a non-genetic, non-pharmacological method for culturing more mature induced pluripotent stem cell-derived cardiac myocytes.

Stationary X-Ray Source

Researchers at the University of California, Davis have developed an integrated method of providing a long lived, high output stationary X-ray source.

Nanowire Building Block

Nanowires have applications as transistors or bioelectronic devices. Current methods to synthesize nanowires lack the ability to precisely control length, sequence, and terminal functionality. Using this invention as a building block, organic nanowires can be made with controlled length, sequence, and terminal functionality. The organic nanowires made with this invention also exhibit zero-resistance and do not degrade with increased length.

Soluble Fluorescent DNA Label

Assays or biosensors that utilize electrochemical or fluorescent techniques often employ DNA electrochemical probes. Current probes have drawbacks, as they have either electronic or fluorescent properties, are not readily water-soluble, and are poorly coupled within a DNA strand. This invention is a DNA electrochemical probe that has both electronic and fluorescent properties, is water-soluble, and can readily incorporate into a DNA strand.

Ligands for Improved Angiogenesis and Endothelialization of Blood Contacting Devices

Researchers at the University of California, Davis have discovered novel targeting ligands that can specifically bind and capture endothelial cells and endothelial progenitors for improved endothelialization and angiogenesis of medical devices and scaffolds.

Novel Solid Tumor Chemodrug LLS2

Researchers at the University of California, Davis have developed a new library of small molecule LLS2 that can kill a variety of cancer cells

  • Go to Page: