Browse Category: Biotechnology > Other

[Search within category]

CRISPRware

Clustered regularly interspaced short palindromic repeats (CRISPR) screening is a cornerstone of functional genomics, enabling genome-wide knockout studies to identify genes involved in specific cellular processes or disease pathways. The success of CRISPR screens depends critically on the design of effective guide RNA (gRNA) libraries that maximize on-target activity while minimizing off-target effects. Current CRISPR screening lacks tools that can natively integrate next-generation sequencing (NGS) data for context-specific gRNA design, despite the wealth of genomic and transcriptomic information available from modern sequencing approaches. Traditional gRNA design tools have relied on static libraries with limited genome annotations and outdated scoring methods, lacking the flexibility to incorporate context-specific genomic information. Off-target effects are also a concern, with CRISPR-Cas9 systems tolerating up to three mismatches between single guide RNA (sgRNA) and genomic DNA, potentially leading to unintended mutations that could disrupt essential genes and compromise genomic integrity. Additionally, standard CRISPR library preparation methods can introduce bias through PCR amplification and cloning steps, resulting in non-uniform gRNA representation.

A Novel 3D-Bioprinting Technology Of Orderly Extruded Multi-Materials Via Photopolymerization

POEM is a groundbreaking 3D bioprinting technology enabling high-resolution, multi-material, and cell-laden structure fabrication with enhanced cell viability.

Artificial Nitrogenase (Artn2ase) Enzymes For Biocatalytic Reduction Of N2 Into Ammonia

A revolutionary enzyme technology for ambient temperature and pressure ammonia synthesis from dinitrogen gas.

Automated Soil Pore Water Sampling and Nitrate Detection System

Researchers at the University of California, Davis have developed a sophisticated soil nitrate sensing system designed to accurately measure soil pore water nitrate concentrations, enhancing sustainable agriculture and environmental monitoring.

Nanopillar-Enhanced Jones Tubes

This technology introduces a novel Jones tube design utilizing nanopillars to significantly reduce biofilm formation, enhancing patient comfort and safety.

Biometric Identification Using Intra Body Communications

An innovative system for biometric identification that utilizes intra-body communication for secure authentication.

SpeedyTrack: Microsecond Wide-field Single-molecule Tracking

      Single-particle/single-molecule tracking (SPT) is a key tool for quantifying molecular motion in cells and in vitro. Wide-field SPT, in particular, can yield super-resolution mapping of physicochemical parameters and molecular interactions at the nanoscale, especially when integrated with single-molecule localization microscopy techniques like photoactivation and fluorophore exchange. However, wide-field SPT is often limited to the slow (<10 μm2/s) diffusion of molecules bound to membranes, chromosomes, or the small volume of bacteria, in part due to the ~10 ms framerate of common single-molecule cameras like electron-multiplying charge-coupled devices (EM-CCDs); for unbound diffusion in the mammalian cell and in solution, a molecule readily diffuses out of the <1 μm focal range of high-numerical-aperture objective lenses within 10 ms. While recent advances such as ultra-highspeed intensified CMOS cameras, feedback control by locking onto a molecule, trapping, and tandem excitation pulse schemes address the framerate issue, each also introduces drawbacks in light/signal efficiency, speed, uninterrupted diffusion paths, and/or trajectory resolution, e.g., number of time points.      UC Berkeley researchers have overcome these myriad challenges by introducing spatially-encoded dynamics tracking (SpeedyTrack), a strategy to enable direct microsecond wide-field single-molecule tracking/imaging on common microscopy setups. Wide-field tracking is achieved for freely diffusing molecules at down to 50 microsecond temporal resolutions for >30 timepoints, permitting trajectory analysis to quantify diffusion coefficients up to 1,000 um2/s. Concurrent acquisition of single-molecule diffusion trajectories and Forster resonance energy transfer (FRET) time traces further elucidates conformational dynamics and binding states for diffusing molecules. Moreover, spatial and temporal information is deconvolved to map long, fast single-molecule trajectories at the super-resolution level, thus resolving the diffusion mode of a fluorescent protein in live cells with nanoscale resolution. Already substantially outperforming existing approaches, SpeedyTrack stands out further for its simplicity—directly working off the built-in functionalities of EM-CCDs without the need to modify existing optics or electronics.

Microfluidic Platform for Sorting Plant Cells

A novel dielectrophoresis (DEP)-based microfluidics method for efficient and label-free sorting of plant cells, leveraging unique dielectric properties.

Spectral Kernel Machines With Electrically Tunable Photodetectors

       Spectral machine vision collects both the spectral and spatial dependence (x,y,λ) of incident light, containing potentially useful information such as chemical composition or micro/nanoscale structure.  However, analyzing the dense 3D hypercubes of information produced by hyperspectral and multispectral imaging causes a data bottleneck and demands tradeoffs in spatial/spectral information, frame rate, and power efficiency. Furthermore, real-time applications like precision agriculture, rescue operations, and battlefields have shifting, unpredictable environments that are challenging for spectroscopy. A spectral imaging detector that can analyze raw data and learn tasks in-situ, rather than sending data out for post-processing, would overcome challenges. No intelligent device that can automatically learn complex spectral recognition tasks has been realized.       UC Berkeley researchers have met this opportunity by developing a novel photodetector capable of learning to perform machine learning analysis and provide ultimate answers in the readout photocurrent. The photodetector automatically learns from example objects to identify new samples. Devices have been experimentally built in both visible and mid-infrared (MIR) bands to perform intelligent tasks from semiconductor wafer metrology to chemometrics. Further calculations indicate 1,000x lower power consumption and 100x higher speed than existing solutions when implemented for hyperspectral imaging analysis, defining a new intelligent photodetection paradigm with intriguing possibilities.

Cell Expansion Platform

Systems for activating and expanding cell populations are useful for several applications. For example, mesenchymal stem cells (MSCs) are useful for tissue engineering, B cells for antibody production, non-mammalian cells for small molecule production and immune cells for re-infusion via adoptive immunotherapy. A current manufacturing bottleneck is the safe and rapid proliferation of cells. Accordingly, new compositions and methods to expand target cell populations are needed. UC Berkeley researchers have developed a platform for the expansion and proliferation of cells by using a 2D hydrogel scaffold with tunable mechanics and incorporated streptavidin moieties. The system was validated by expanding human T cells and showed T cell expansion 41% and 70% greater than the current clinical standard. This greater fold expansion was preceded by increased metabolic and proliferation-related transcriptional activity.

(SD2024-269) Bento: An open-sourced toolkit for subcellular analysis of spatial transcriptomics data

Bento is an open-source software toolkit that uses single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. The toolkit is compatible with datasets produced by commercial and academic platforms. Bento is integrated with the open-source single-cell analysis software ecosystem.

Genes Controlling Barrier Formation in Roots

Researchers at the University of California, Davis have developed advancements in understanding exodermal differentiation in plant roots highlighting the role of two transcription factors in plant adaptation and survival.

Bioluminescent Probes For Visualizing RNA Dynamics

A novel bioluminescent platform for in vivo tracking and visualization of RNA dynamics without the need for excitation light.

Systems and Methods of Single-Cell Segmentation and Spatial Multiomics Analyses

Researchers at the University of California, Davis have developed a novel cell segmentation technology for accurate analysis of non-spherical cells and that offers a comprehensive, high-throughput approach for analyzing the transcriptomic and metabolomic data to study complex biological processes at the single-cell level.

Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy

      Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control.       UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.

One-step Packaged Multi-mode CMOS Bio-analyzer for Point-of-Care

      Current clinical practice for detecting low-concentration molecular biomarkers requires sending samples to centralized labs, leading to high costs and delays. Successful point-of-care (POC) diagnostic technology exist, such as the paper-based lateral-flow assay (LFA) used for pregnancy tests and SARS-CoV-2 rapid antigen tests, or miniaturized instruments such as the Abbot i-Stat Alinity. However, the former provides binary results or limited quantitative accuracy, and the latter is too expensive for in-home deployment. A promising approach for POC diagnostics, offering tailored circuit optimization, multiplexed detection, and significant cost and size reductions, is millimeter-sized CMOS integrated circuits coupled with microfluidics. Recent demonstrations include protein, DNA/RNA, and cell detection. The current complexity of system packaging (e.g., wire/flip-chip bonding) makes integrating microfluidics with more sophisticated functions challenging, and often-required syringe pumps and tubing are operationally unfriendly, limiting current approaches.       UC Berkeley researchers have developed a fully integrated, multi-mode POC device that requires single-step assembly and operates autonomously. Drawing inspiration from RFID technology and implantables, they have introduced inductively-coupled wireless powering and communication functionality into a CMOS bio-analyzer. With the chip being fully wireless, the die can be easily integrated into a substrate carrier, achieving a completely flat surface that allows for seamless bonding with the microfluidic module. In the final product, the device will be sealed in a pouch inside a vacuum desiccator. The user tears the pouch, adds a drop of sample, and the system automatically begins operation. The operation window can last up to 40 minutes, making the process insensitive to time delays. The present CMOS bio-analyzer integrates pH-sensing and amperometric readout circuits for both proton-based and redox-based immunoassays.

Subtractive Microfluidics in CMOS

      Integrating microelectronics with microfluidics, especially those implemented in silicon-based CMOS technology, has driven the next generation of in vitro diagnostics. CMOS/microfluidics platforms offer (1) close interfaces between electronics and biological samples, and (2) tight integration of readout circuits with multi-channel microfluidics, both of which are crucial factors in achieving enhanced sensitivity and detection throughput. Conventionally bulky benchtop instruments are now being transformed into millimeter-sized form factors at low cost, making the deployment for Point-of-Care (PoC) applications feasible. However, conventional CMOS/microfluidics integration suffers from significant misalignment between the microfluidics and the sensing transducers on the chip, especially when the transducer sizes are reduced or the microfluidic channel width shrinks, due to limitations of current fabrication methods.       UC Berkeley researchers have developed a novel methodology for fabricating microfluidics platforms closely embedded within a silicon chip implemented in CMOS technology. The process utilizes a one-step approach to create fluidic channels directly within the CMOS technology and avoids the previously cited misalignment. Three types of structures are presented in a TSMC 180-nm CMOS chip: (1) passive microfluidics in the form of a micro-mixer and a 1:64 splitter, (2) fluidic channels with embedded ion-sensitive field-effect transistors (ISFETs) and Hall sensors, and (3) integrated on-chip impedance-sensing readout circuits including voltage drivers and a fully differential transimpedance amplifier (TIA). Sensors and transistors are functional pre- and post-etching with minimal changes in performance. Tight integration of fluidics and electronics is achieved, paving the way for future small-size, high-throughput lab-on-chip (LOC) devices.

Improved Surface Enhanced Raman Spectroscopic (SERS) Method Operating in the Shortwave Infrared

      Raman spectroscopy, the inelastic scattering of light off molecular vibrations or solid- state phonons, is a critical method in chemical analytics, biological imaging, and materials or even art characterization. A common method for signal enhancement is surface enhanced Raman spectroscopy (SERS), where noble metal or dielectric nanostructures locally enhance the incoming and/or scattered field. SERS has found wide-spread applications in bio- analytics, fundamental science, viral and bacterial classification, and the study of tissue samples. Yet, obstacles towards more wide-spread adoption with wider scope are poor SERS substrate reproducibility and local hotspot fluctuations of metallic SERS substrates, and background emission from molecules, analytes, hot electrons, plasmons, or carriers in dielectrics that can significantly interfere with small signals of target analytes in SERS.       UC Berkeley researchers have developed an improved method for SERS that simultaneously minimizes spurious background emission, minimizes local heating even under high excitation powers, and maximizes the Raman signal enhancement of dielectric SERS substrates. Together these advantages render the method a powerful contender for sought after quantitative SERS and reliable analyte and single- molecule detection without fluctuations or other perturbations from SERS substrates. This enables commercially relevant usage, particularly in the biosciences and diagnostics, DNA/RNA sequencing, protein sequencing, determination of biomolecular binding constants, interconversion kinetics between biomolecular conformers, post-translational modifications, determination of molecular folding statuses, and classification of different proteoforms. It further has commercial potential in environmental monitoring, food safety, semiconductor inspection, polymer quality control and research, quality control in pharmaceuticals – including vesicles for drug delivery-, materials science, and physical science research.

Substantial defluorination of chlorinated PFCAs

Brief description not available

Multilayer Pouch Robot And Manufacturing Method

Inflatable pouches are attractive as actuators and structural links in soft robots due to their low deflated profile and high deformation ratio. Particularly compelling for minimally invasive surgery, deflated robots/actuators may be deployed in small form factors and maneuver delicately in tight spaces once inflated. However, current fabrication methods do not readily scale for production of actuators with less than 1 mm feature sizes; they often require precision handling of separator films; and/or there are limited multilayer integration capabilities. Fully miniaturized, high degree-of-freedom surgical pouch robots and actuators have not yet been realized.To overcome these challenges, UC Berkeley researchers have developed a rapid, monolithic, and scalable manufacturing method for fabricating thin-film-based pneumatic pouch soft robots. Small features (less than 0.3 mm) can be patterned at high speeds and using commercially available manufacturing tools while maintaining film planarity. Resulting robots can have complex, multilayer structures including single- and bi-directional joint actuators, structural links, integrated in-plane air channels, through-holes for interlayer connectivity, and air inlets to a supply manifold—from a single integrated processing step. Researchers have demonstrated a miniature four finger hand which can dexterously manipulate a cube (8 degrees of freedom), as well as an 10 degree-of-freedom planar arm with a gripper which can maneuver around obstacles. Entire pouch robot structures can have un-inflated thickness of less than 300 um and be inherently soft, allowing the robots to be used in tight spaces with fragile tissues for surgical applications.

Compact Series Elastic Actuator Integration

      While robots have proven effective in enhancing the precision and time efficiency of MRI-guided interventions across various medical applications, safety remains a formidable challenge for robots operating within MRI environments. As the robots assume full control of medical procedures, the reliability of their operation becomes paramount. Precise control over robot forces is particularly crucial to ensure safe interaction within the MRI environment. Furthermore, the confined space in the MRI bore complicates the safe operation of human-robot interaction, presenting challenges to maneuverability. However, there exists a notable scarcity of force-controlled robot actuators specifically tailored for MRI applications.       To overcome these challenges, UC Berkeley researchers have developed a novel MRI-compatible rotary series elastic actuator module utilizing velocity-sourced ultrasonic motors for force-controlled robots operating within MRI scanners. Unlike previous MRI-compatible SEA designs, the module incorporates a transmission force sensing series elastic actuator structure, while remaining compact in size. The actuator is cylindrical in shape with a length shorter than its diameter and integrates seamlessly with a disk-shaped motor. A precision torque controller enhances the robustness of the invention’s torque control even in the presence of varying external impedance; the torque control performance has been experimentally validated in both 3 Tesla MRI and non-MRI environments, achieving a settling time of 0.1 seconds and a steady-state error within 2% of its maximum output torque. It exhibits consistent performance across low and high external impedance scenarios, compared to conventional controllers for velocity-sourced SEAs that struggle with steady-state performance under low external impedance conditions.

Dissolvable Calcium Alginate Microfibers via Immersed Microfluidic Spinning

A novel method for producing dissolvable alginate microfibers critical for advanced tissue engineering and microfluidic network fabrication.

Affinity Targeted Immunogens

Researchers at the University of California, Davis have developed an approach to elicit powerful immune responses by engineering the binding capabilities of single chain trimer (SCT) proteins to CD8.

High-Speed, High-Memory NMR Spectrometer and Hyperpolarizer

         Recent advancements in nuclear magnetic resonance (NMR) spectroscopy have underscored the need for novel instrumentation, but current commercial instrumentation performs well primarily for pre-existing, mainstream applications. Modalities involving, in particular, integrated electron-nuclear spin control, dynamic nuclear polarization (DNP), and non-traditional NMR pulse sequences would benefit greatly from more flexible and capable hardware and software. Advances in these areas would allow many innovative NMR methodologies to reach the market in the coming years.          To address this opportunity, UC Berkeley researchers have developed a novel high-speed, high-memory NMR spectrometer and hyperpolarizer. The device is compact, rack-mountable and cost-effective compared to existing spectrometers. Furthermore, the spectrometer features robust, high-speed NMR transmit and receive functions, synthesizing and receiving signals at the Larmor frequency and up to 2.7GHz. The spectrometer features on-board, phase-sensitive detection and windowed acquisition that can be carried out over extended periods and across millions of pulses. These and additional features are tailored for integrated electron-nuclear spin control and DNP. The invented spectrometer/hyperpolarizer opens up new avenues for NMR pulse control and DNP, including closed-loop feedback control, electron decoupling, 3D spin tracking, and potential applications in quantum sensing.

  • Go to Page: