Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > NanoBio

Categories

[Search within category]

Polyrotaxane Nanoparticles for Delivery of Large Plasmid DNA in Duchenne Muscular Dystrophy

UCLA researchers have designed, synthesized, and validated a polyrotaxane nanocarrier for targeted delivery of large plasmids for gene therapy applications for treatment of Duchenne muscular dystrophy and cancer.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Compositions Of Polyion Complex Polypeptide Hydrogels

UCLA researchers in the Department of Bioengineering have developed a new class of cell-compatible copolypeptide hydrogels that possess chain conformation directed polyion complex (PIC) supramolecular architectures.

Mobile Phone Based Fluorescence Multi-Well Plate Reader

UCLA researchers have developed a novel mobile phone-based fluorescence multi-well plate reader.

Controlled-Release Cysteamine Nanowafer For Treating Corneal Cystinosis

Corneal cystinosis is a rare metabolic disease that causes loss of vision. Researchers at UCI have developed a nanowafer drug delivery system that has demonstrated twice the therapeutic efficacy during in vivo studies in mice.

Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning

UCLA researchers have developed a novel method for computational sensing using low-cost and mobile plasmonic readers designed by machine learning.

Sealed Nanostraw Microdevices For Oral Drug Delivery

This invention is a nanostraw device that is built upon microdevice technology for oral drug delivery. It is the first example of a microdevice for oral drug delivery, with the drug sealed in by a semi-permeable membrane for (1) in-solution drug loading, and tunable drug release, (2) increased bioadhesion for prolonged drug exposure, and (3) protection of drug from outside biomolecules.

Nanowire-Coated Planar Microdevices For Transmucosal Drug Delivery

This invention describes a first-of-a-kind methodology using micro- and nanofabrication techniques to create polymeric microscale devices that are asymmetrically coated with nanowires. The nanowire coating provides an inherent high-throughput, low-waste drug loading mechanism, enhanced cytoadhesion, and may potentially interact with epithelial tissue to enhance drug permeation.

Novel Nanoliposomal Nitroglycerin Formulation for Cardiovascular Therapies

    To address this major limitation, investigators at UCR have developed a nanoliposomal formulation of NTG, which achieves a 70-fold increase in the anti-inflammatory effect of NTG when compared to NTG. This increase in potency allows lower doses to be effective, which could mitigate the common issues seen with high clinical doses of NTG viz. loss of NTG sensitivity and endothelial toxicity. Fig. 1 Adhesion of U937 monocytes to NO-deficient (L-NIO-treated) ECs is significantly blocked by treating ECs with 5 ug/ml nanoliposomal nitroglycerin (NTG-NL). L-NIO is a selective eNOS inhibitor.  Remarkably, this anti-inflammatory dose of NTG in nanoliposomes is 70-fold lower than the dose of free NTG (5uM) required to achieve a similar effect

Anti-Microbial Contact Lens With Ocular Drug Delivery

Anti-microbial, anti-fungal drug eluting contact lens for the controlled release of ophthalmic therapeutics.

System and Method for High Density Assembly and Packaging of Micro-Reactors

High density micro-reactors are fabricated to form an array of wells into a surface for use in high throughput microfluidic applications in biology and chemistry. Researchers at the University of California, Irvine developed a method for increasing micro-reactor densities per unit area using rapidly self-assembled three-dimensional crystalline formation droplet arrays, and a device for performing the same.

Extracellular Nano-vesicles For Applications In Therapeutic Delivery

Drug delivery relies on nano-sized carriers whose objectives are to protect cargo from the body and to release the cargo at the appropriate site without inducing immunogenic response. The inventors at UCI have developed a method of mass producing extracellular nano-vesicles that have shown promise for drug delivery, but have been slow to progress to clinical trials due to low production yields.

Peripheral Nerve Repair By Peptide Amphiphile Nanofibers.

UCLA researchers in the Department of Surgery have developed a novel method that promotes directed nerve growth and peripheral nerve regeneration using peptide amphiphile (PA) nanofibers. The combination of conduit and PA nanofiber scaffold offers greater success than currently used methods of bridging with empty conduits. This novel approach may become a substitute for nerve graft for clinical use in the treatment of peripheral nerve injuries.

Microfluidics Device For Digestion Of Tissues Into Cellular Suspension

A microfluidic device that separates single cells from whole tissue in a rapid and gentle manner using hydrodynamic fluid flow. The separated single cell suspensions can then be used in tissue engineering applications, regenerative medicine and the study of cancer.

Gene Delivery Into Mature Plants Using Carbon Nanotubes

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Current methods of biomolecule delivery to mature plants are limited due to the presence of plant cell wall, and are additionally hampered by low transfection efficiency, high toxicity of the transfection material, and host range limitation. For this reason, transfection is often limited to protoplast cultures where the cell wall is removed, and not to the mature whole plant.  Unfortunately, protoplasts are not able to regenerate into fertile plants, causing these methods to have low practical applicability. Researchers at the University of California have developed a method for delivery of genetic materials into mature plant cells within a fully-developed mature plant leaf, that is species-independent. This method utilizes a nano-sized delivery vehicle for targeted and passive transport of biomolecules into mature plants of any plant species. The delivery method is inexpensive, easy, and robust, and can transfer biomolecules into all phenotypes of any plant species with high efficiency and low toxicity.

Holographic Opto-Fluidic Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a system for holographic opto-fluidic microscopy.

High-Throughput And Label-Free Single Nanoparticle Sizing Based On Time-Resolved On-Chip Microscopy

UCLA researchers in the Department of Electrical Engineering have developed a rapid, low-cost, and label-free methodology for nanoparticle sizing.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Process For Recycling Surfactant In Nanoemulsion Production

UCLA researchers in the Department of Chemistry and Biochemistry have developed a novel method to separate and recycle surfactants used in the manufacturing of nanoemulsions.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

A General Method For Designing Self-Assembling Protein Nanomaterials

UCLA researchers in the Department of Chemistry & Biochemistry have developed a novel computational method for designing proteins that self-assemble to a desired symmetric architecture. This method combines symmetrical docking with interface design, and it can be used to design a wide variety of self-assembling protein nanomaterials. 

Drop-Carrier Particles For Digital Assays

UCLA researchers in the Department of Bioengineering have developed a novel drop-carrier particle for single cell or single molecule assays.

Low Cost Wireless Spirometer Using Acoustic Modulation

The present invention relates to portable Spirometry system that uses sound to transmit pulmonary airflow information to a receiver.

Microfluidic Component Package

The present invention describes a component package that enables a microfluidic device to be fixed to a Printed Circuit Board (PCB) or other substrate, and embedded within a larger microfluidic system.

  • Go to Page: