Browse Category: Medical > Screening

[Search within category]

Methods and Systems for Rapid Antimicrobial Susceptibility Tests

Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.

SPECTRAL DOMAIN FUNCTIONAL OCT and ODT

This technology revolves around Optical Coherence Tomography (OCT), a noninvasive imaging method that provides detailed cross-sectional images of tissue microstructure and blood flow. OCT utilizes either time domain (TDOCT) or Fourier domain (FDOCT) approaches, with FDOCT offering superior sensitivity and speed. Doppler OCT combines Doppler principles with OCT to visualize tissue structure and blood flow concurrently. Additionally, polarization-sensitive OCT detects tissue birefringence. Advanced methods aim to enhance the speed and sensitivity of Doppler OCT, crucial for various clinical applications such as ocular diseases and cancer diagnosis. Swept source FDOCT systems further improve imaging capabilities by increasing range and sensitivity. Overall, this technology represents significant advancements in biomedical imaging, offering insights into both structural and functional aspects of tissue physiology.

Droplet microvortices for modulating cell dynamics

The invention presents a microfluidic platform equipped with specialized trapping arrays and droplet generation capabilities, enabling precise control over the formation of microvortices within cell-laden droplets. This novel system facilitates the study of cell-cell interactions at a single-cell level, offering configurable microenvironments for analyzing cell dynamics and pair relationships.

New Cross-Linking Mass Spectrometry Platform: SDASO-L, SDASO-M, and SDASO-S

An innovative mass spectrometry platform that utilizes sulfoxide-containing MS-cleavable heterobifunctional photoactivated cross-linkers to enhance protein structural elucidation.

Imaging of cellular immune response in human skin

This patent application describes methods for non-invasive, label-free imaging of the cellular immune response in human skin using a nonlinear optical imaging system.

High throughput and precision cell sorting

A novel method and device for high-throughput sorting of cells in suspension, particularly focusing on the separation of key cellular blood components of the immune system. The patent application presents a novel approach to high-throughput cell sorting, particularly suitable for applications in medicine and biotechnology where precise separation of cell populations is crucial.

Quantifying optical properties of skin

The disclosed methods offer a robust approach to accurately quantify skin optical properties across different skin tones, facilitating improved diagnosis, monitoring, and treatment in dermatology.

FlexThrough: a recirculation mechanism for point of care, centrifugal disk-based microfluidic devices

One of the key limitations for devices used in point-of-care diagnostics (POCD) is their limit of detection; patient samples used for POCD devices often contain too low of the target analyte. FlexThrough is a newly developed, centrifugal disk (CD)-based method that utilizes the entirety of a liquid sample via recirculation of the sample for efficient mixing as it iteratively passes through the system.

Rapid optical detection system for SARS-CoV-2 and other pathogens

Researchers at UC Irvine have developed an optical detection system for SARS-CoV-2 and other pathogens that features improvements in screening time, cost, sensitivity, and practicality. As vaccine availability, economic pressure, and mental health considerations has gradually returned society to pre-pandemic activities that require frequent and close interactions, it is imperative that SARS-CoV-2 detection systems remain effective.

An accessible lab on a chip platform for single cell differentiation of cancerous tumors

Researchers at UC Irvine have developed a novel, machine learning-assisted biochip for rapid, affordable, and practical analysis of single cell tumor heterogeneity. The technology’s low cost and ease of manufacture makes it an optimal point-of-care diagnostic in developing countries, where early cancer detection is severely lacking.

Redesigned vaginal speculum for enhanced patient comfort and physician use

Researchers at UC Irvine have redesigned the vaginal speculum, a medical device routinely used for pap smears, and other medical procedures that involve inspection of the vaginal canal (i.e. IUD insertions, STD testing, and hysterectomies). The novel design addresses several patient discomforts associated with currently used speculums and is more time- and cost-effective for health professionals.

DNN-Assisted Sensor for ECG Monitoring

Inventors at UCI have developed a method of monitoring ECG signals from wearable devices while using artificial intelligence to only select the signals that are relevant to disease for further evaluation.

Automated Histological Image Processing tool for Identifying and Quantifying Tissue Calcification

Researchers at UCI have developed a method of identifying, quantifying, and visualizing tissue with calcification. The image processing tool can automatically characterize calcium deposits in CT images histological tissue, especially when it has accumulated in unusual places in the body.

Low-Dose Ct Perfusion Technique

Coronary atherosclerosis (a thickening of the arterial wall) is correlated to the occurrence of cardiac events; therefore, its correct and early diagnosis is paramount in the prevention and treatment of coronary artery disease. Researchers at UCI have developed an innovative method for assesses coronary artery stenosis and microvascular disease that is both accurate and non-invasive.

A Microplatform For Performing High Throughput, Multiplexed Assays On Adherent Cells

Systems and methods are providing for performing high-throughput, programmable, multiplexed assays of biological, chemical or biochemical systems. Preferably, a micro-pallet includes a small flat surface designed for single adherent cells to plate, a cell plating region designed to protect the cells, and shaping designed to enable or improve flow-through operation. The micro-pallet is preferably patterned in a readily identifiable manner and sized to accommodate a single cell to which it is comparable in size. Each cell thus has its own mobile surface. The cell can be transported from place to place and be directed into a system similar to a flow cytometer. Since, since the surface itself may be tagged (e.g., a bar code), multiple cells of different origin and history may be placed into the same experiment allowing multiplexed experiments to be performed.

Noninvasive Method and Apparatus for Peripheral Assessment of Vascular Health

UCI researchers introduce a medical device which noninvasively and accurately monitors vascular health metrics such as endothelial function, arterial stiffness, and blood pressure.

Automatic Identification of Ophthalmic Medication for The Visually Impaired

Researchers at UCI are developing technology that allows visually impaired patients to use their smartphones to take pictures of their eye medication/eye drop bottles. The technology will recognize the eye medication and verbally communicate the medication and will audibly confirm the medication along with the instructions on use.

Simple Imaging Tool for Oral Cancer Detection and Monitoring

UCI researchers have developed a miniature, flexible intra-oral probe with a camera that allows early detection of oral cancer lesions in difficult-to-see, high risk areas of the mouth and throat. The tool allows for a low cost, non-invasive procedure that can be easily adopted in non-specialist medical settings.

At Home Fetal Electrocardiogram/Heartrate Monitor for Congenital Heart Defect Diagnosis

Congenital heart defects affect >1% of babies born in the United States. These defects originate early on in fetal development. Inventors at UC Irvine have developed a flexible medical device that allows at home fetal electrocardiogram (ECG) monitoring to diagnosis congenital heart defects during development.

A High Potency CYP3A4 Inhibitor for Pharmacoenhancement of Drugs

      CYP3A4 is the most clinically relevant drug metabolizing enzyme in the body, as it is responsible for the oxidation and breakdown of ~60% of current drugs on the market.  Researchers at UCI have developed novel CYP3A4 inhibitors, that are highly potent and more specific, exhibit fewer side effects, and are both cheaper, and easier to-synthesize than current commercially available CYP3A4 inhibitors. 

Nano Biosensing System

Metabolites can provide real-time information about the state of a person’s health. Devices that can detect metabolites are commercially available, but are unable to detect very low concentrations of metabolites. Researchers at UCI have developed surfaces that use nanosensors to detect much lower concentrations of such metabolites.

Multi Layered Microfluidic Devices For In Vitro Large Scale Perfused Capillary Networks

"Organ-on-a-chip” technologies allow recapitulation of organ systems in vitro and can be utilized for drug response and toxicity studies, which are required in preclinical studies. However, current recapitulations via “organ-on-a-chip” technologies are limited because the designs do not fully reflect physiological complexity. To address this, UC Irvine inventors have developed a device to better mimic the vascular network of the circulatory system. This device can also be used to simulate different tissues, disease models or organs.

In vivo optical biopsy applicator of the vaginal wall for treatment planning, monitoring, and imaging guided therapy

Pelvic floor disorders (PFDs) afflict nearly 25% of all women and carry a host of symptoms that can drastically reduce quality of life. Despite their prevalence, the complex and varied nature of such PFDs make them difficult to diagnose and treat. Researchers at UCI have developed an entirely integrated system that, for the first time, provides real-time monitoring of the vaginal wall tissue during diagnosis and treatment, allowing for more thorough diagnoses and more effective treatment methods.

Endoscopic Optical Coherence Tomography As A Minimally Invasive Lung Cancer Screening Tool To Guide Diagnosis And Therapy

Current diagnostic procedures for lung cancer are invasive, time-consuming, and subjective. UCI researchers have developed a quick, non-invasive lung cancer diagnostic device which uses optical coherence tomography (OCT) and can improve lung cancer diagnosis and outcomes.

A Highly Error-Prone Orthogonal Replication System For Targeted Continuous Evolution In Vivo

Inventors at UC Irvine have engineered an orthogonal DNA replication system capable of rapid, accelerated continuous evolution. This system enables the directed evolution of specific biomolecules towards user-defined functions and is applicable to problems of protein, enzyme, and metabolic pathway engineering.

  • Go to Page:

5270 California Avenue / Irvine,CA
92697-7700 / Tel: 949.824.2683
  • Facebook
  • Twitter
  • Twitter
  • Twitter
  • Twitter