Browse Category: Sensors & Instrumentation > Environmental Sensors

[Search within category]

(SD2023-006) Gas delivery and purification system for continuous monitoring of atmospheric helium and other trace gases: applications to the global carbon cycle, verifying reported natural gas emissions, and predicting earthquakes

Researchers from UC San Diego have developed an invention that allows the continuous monitoring of atmospheric He, Ne, and H2 at unprecedented precision. This enables important new applications including in the understanding of the global carbon cycle, verifying reported natural gas emissions, and predicting earthquakes.

Bio-mimetic Wetness Device and Method

In 2019, the Food and Agriculture Organization of the United Nations estimated that between 20 to 40 percent of global crop production are lost to plant diseases and pests annually, with plant diseases costing the global economy roughly $220B each year. Disease-warning systems are currently being used by growers to preemptively mitigate destructive events using chemical treatment or biological management. Meteorological factors including rainfall, humidity, and air temperature are all considered in these systems, but the measurement of leaf wetness duration (LWD) is important to its governing role in infection processes for many fungal pathogens. The longer a leaf stays wet, the higher the risk that disease will develop, because many plant pathogen propagules require several hours of continuous moisture to germinate and initiate infection The current gold standard to measuring LWD is using the capacitive leaf wetness sensor (LWS). The LWS functions by measuring a change in the capacitance seen at its surface which then yields an output signal that changes according to its surface wetness. Commercial leaf wetness sensors estimate the amount of surface water and leaf wetness duration by measuring the change in capacitance of a surface that accumulates condensed water. However, the one-size-fits-all commercial sensors do not accurately reflect the variation in leaf traits (particular shape, texture, and hydrophobicity) these traits strongly affect surface wettability (hydrophilicity) and vary widely among plant species.


Real-time radiation monitoring is critical for public health and emergency response. High-frequency monitoring can generate large amounts of data for dozens of radioactive isotopes though. There is a growing demand for compact radiation detection devices that are also able to quickly and autonomously process these large datasets for anomalies. A UC Santa Cruz researcher has developed machine learning software that synthesizes real-time radiation monitoring data in situ to detect radioactive anomalies.


Understanding of biophysical processes in marine mammals, like elephant seals, is limited by our ability to monitor wild behavior. Elephant seals spend the majority of their life at sea, reaching depths of over 1500 m that challenge even the most recent advances in biometric monitoring devices. Many existing devices for monitoring electrophysical signals in seals are also invasive and require skin or skull perforation for electrode implantation. A UC Santa Cruz researcher has designed a water-resistant, non-invasive device that can withstand pressures of 3000 psi and is capable of monitoring over twenty electrophysiological signals in wild elephant seals.


Target biomarkers are often found at low levels (e.g., attomolar to picomolar scale) in the early stages of disease. Current biosensor technologies are limited by their ability to simply and precisely detect target biomarkers at very low concentrations though. Typical biomedical samples, like blood or urine, can also compromise the specificity and sensitivity of common diagnostic platforms without extensive sample processing to remove background contaminants.

Magnetochromatic Spheres

Brief description not available

Carbon Nanotube Infrared Detector

Brief description not available

Chromium Complexes Of Graphene

Brief description not available

(SD2021-377) Pressure-stabilized dual inlet gas mass spectrometry

Mass spectrometers for high precision gas isotope measurements (e.g., noble gases, carbon, nitrogen) are typically equipped with a dual inlet system in which one side contains the unknown sample gas and the second side contains a known standard. Repeated comparisons of the two gases allows precise determination of differences in the gas composition. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

Biodegradable Potentiometric Sensor to Measure Ion Concentration in Soil

The inventors have developed ion-selective potentiometric sensors for monitoring soil analytes with naturally degradable substrate, conductor, electrode, and encapsulant materials that minimize pollution and ecotoxicity. This novel sensor-creation method uses printing technologies for the measurement of nitrate, ammonium, sodium, calcium, potassium, phosphate, nitrite, and others. Monitoring soil analytes is key to precision agriculture and optimizing the health and growth of plant life. 

Portable Cyber-Physical System For Real-Time Daylight Evaluation In Buildings

In developed countries, buildings demand a large percentage of a region's energy-generating requirements. This has led to an urgent need for efficient buildings with reduced energy requirements. In office buildings, lighting takes up 20% to 45% of the total energy consumption. Furthermore, the adoption of smart lighting control strategies such as daylight harvesting is shown to reduce lighting energy use by 30% to 50%.For most closed-loop lighting control systems, the real-time data of the daylight level at areas of interest (e.g., the office workbench) are the most important inputs. Current state-of-the-art solutions use dense arrays of luxmeters (photosensors) to monitor the daylight environment inside buildings. The luxmeters are placed on either workbenches, or ceilings and walls near working areas. Digital cameras are used in controlled laboratory environments and occasionally in common buildings to evaluate glare resulting from excessive daylight. The disadvantage of these sensor-based approaches is that they're expensive to install and commission. Additionally, the sample area of these sensors is limited to either the area of the luxmeters or the view of the cameras. Consequently, many sensors are needed to measure the daylight in a large office space.To address this situation, researchers at UC Berkeley developed a portable cyber-physical system for real time, daylight evaluation in buildings, agriculture facilities, and solar farms (collectively referred to as "structures").

Gas Sensors For Hazardous Chemical Detection

Prof. Nosang Myung and colleagues from the University of California, Riverside have developed state-of-the-art gas sensors that may be used to create an electronic nose. This device is known as ChromaNose. ChromaNose is capable of sensing carbon monoxide, hydrogen sulfide, hydrogen gas, oxygen gas, nitrogen dioxide, and ammonia at room temperature. This technology may be used in various applications to detect harmful chemicals that people cannot see or smell. For example, ChromaNose may detect cleaning solvent residue left in masks worn by Air Force personnel. The inhalation of cleaning solvent residue causes the wearer to become ill. It would be desirable to detect and remove any cleaning solvents remaining in a mask to prevent illness. Fig 1: Image of the UCR Pt/SnO2/SWNT hybrid nanostructure sensors.

Method For Rapid In Situ Detection Of Ammonia

This invention, a simple and robust method for ammonia detection, offers high-speed in situ quantification of ammonia concentrations with high sensitivity. The ammonia detection system does not require complex instrumentation, analysis, or labeling, which would allow for widespread adoption in chemistry-based fields and surrounding disciplines.

Non Intrusive Workflow Assessment (NIWA) for Manufacturing Optimization

The invention is a smart non-intrusive workflow assessment platform for monitoring and optimizing manufacturing environments. The platform monitors environmental and energy metrics, and provides learning models to classify workers’ activities and relate them to the equipment utilization and performance. Correlating both stream of data enables both workers and supervisors to improve the efficiency of the whole manufacturing process and at an affordable price.

Guided-Wave Powered Wireless Sensors

UCLA researchers in the Department of Electrical and Computer Engineering have developed a wirelessly powered, flexible sensor that detects pipe leaks over long distances.

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

Development Of Biosensors For Drought Stress In Plants

Researchers at the University of California, Davis have developed a prototype biosensor that can monitor detectable levels of hormones present in plants experiencing drought or other environmental stress.

Ultra-Sensitive Polybrominated Diphenyl Ether (PBDE) Detector

Polybrominated diphenyl ethers (PBDEs) are a common brominated flame retardant, which are commonly found in consumer products. Because they are not chemically bound to polymers, PBDEs are blended in during formation and have the ability to migrate from products into the environment.  Studies suggest that PBDEs pose potential health risks such as hormone disruptors, adverse neurobehavioral toxins and reproductive or developmental effects.  For this reason it is important to have the capability to sense the presence of PBDEs even in low concentrations.

Near-Zero Power Fully Integrated CMOS Temperature Sensor

With the planned proliferation of the Internet-of-Things, billions of power limited wireless sensing devices are expected to be sold worldwide.  Within that group is a large subset of applications in which temperature sensing will be important.  Needed for this application space are ultra-small and ultra-low-power temperature sensors. 

  • Go to Page: