Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Materials & Chemicals > Agricultural


[Search within category]

Devices For Integrated Solar Photodialysis Of Salt Water

Researchers at UCI have developed a compact device for the rapid desalination of water which is driven entirely by renewable solar energy.

A Highly Error-Prone Orthogonal Replication System For Targeted Continuous Evolution In Vivo

Inventors at UC Irvine have engineered an orthogonal DNA replication system capable of rapid, accelerated continuous evolution. This system enables the directed evolution of specific biomolecules towards user-defined functions and is applicable to problems of protein, enzyme, and metabolic pathway engineering.

Personal Use Colorimetric Fumigant Sensors

Researchers at the University of California, Davis have developed paper based sensors that rapidly detect low concentration of fumigants in the air.

Clarifying Water And Wastewater With Fungal Treatment/Bioflocculation

Researchers at the University of California, Davis have developed a low cost method of cleaning water and wastewater by removing microalgae and bacteria with fungal bioflocculation.

Sensitive Detection Of Chemical Species Using A Bacterial Display Sandwich Assay

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Endocrine disrupting compounds are found in increasing amounts in our environment, originating from pesticides, plasticizers, and pharmaceuticals, among other sources. These compounds have been implicated in diseases such as obesity, diabetes, and cancer. The list of chemicals that disrupt normal hormone function is growing at an alarming rate, making it crucially important to find sources of contamination and identify new compounds that display this ability. However, there is currently no broad-spectrum, rapid test for these compounds, as they are difficult to monitor because of their high potency and chemical dissimilarity.   To address this, UC Berkeley researchers have developed a new detection system and method for the sensitive detection of trace compounds using electrochemical methods.  This platform is both fast and portable, and it requires no specialized skills to perform. This system enables both the detection of many detrimental compounds and signal amplification from impedance measurements due to the binding of bacteria to a modified electrode. The researchers were able to test the system finding sub-ppb levels of estradiol and ppm levels of bisphenol A in complex solutions. This approach should be broadly applicable to the detection of chemically diverse classes of compounds that bind to a single receptor.  

Methods and Compositions for Increasing Desiccation Tolerance In a Cell

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The impact of desiccation on microorganisms such as yeasts, bacteria, and plants are extremely important in a variety of industries ranging from the food and beverage industry that rely heavily on yeast and agricultural crops.  Microorganisms can survive for a certain period of time when water is limited, but may not be able to survive severe environmental conditions when desiccation tolerance is low. The market potential in stabilization of cells and cell products is estimated to be some $500 billion worldwide. For example, it has been reported that fewer than one in a million yeast cells from low-density logarithmic cultures of Saccharomyces cerevisiae survive desiccation. Therefore, given the exceedingly large number of microorganisms used in a variety of industries, even minor increases in survival can result in significant improvements in final output. For example, applications such as freeze-drying cells for the medical industry are used to preserve cell structure and function for long term storage. Additionally, the largest market for freeze-drying is the food industry.   UC Berkeley researchers have developed methods and compositions for increasing desiccation tolerance in a cell by contacting the cell with one or more agents that generates synergistic amounts of trehalose and a hydrophilin protein within the cell.  Cells with increased desiccation tolerance have also been developed.  

Novel Synthesis of 2,5- Dimethylfuran from 5- (Chloromethyl)furfural

Researchers at the University of California, Davis have developed an efficient synthesis of 2,5- dimethylfuran (DMF) from 5- (chloromethyl)furfural (CMF).

Development Of Biodegradable Bait Station For Liquid Ant Bait

Background: Current bait station designs and other pest control tools are not very ideal nor advanced – they leak, become excessively hydrated or dehydrated, and need frequent maintenance. The global pest control services market is expected to grow annually at 5.3% and the industry is always looking for unique ways to conquer them.  Brief Description: UCR Researchers have developed a novel, protected bait station that has controlled liquid bait release. The compact design contains a sugary, insecticide liquid bait that diffuses through an absorbent polymer or gel matrix. Only ants have access to the station and once an ant consumes the bait, the station biodegrades thus eliminating bait station cleanup.

Development Of Pheromone Assisted Techniques To Improve Efficacy Of Insecticide Sprays Targeting Urban Pest Ant Species

Background: Pheromones are chemical secretions that dictate behavior in many social insects such as ants, bees and termites. They use them for various pivotal roles in foraging, nest relocation, defense and reproduction. Implementation of pheromone trails that lead urban pests to their imminent doom is a very notable, strategic approach. Current pest management programs are in need of better synthetic pheromone formulations for a more effective and species-specific utilization.   Brief Description: UCR Researchers have developed a novel synthetic pheromone compound and management system that lures targeted ant species to an insecticide-treated area. This pheromone-assisted technique will maximize the efficacy of insecticide sprays by reducing insecticide contact in the environment while increasing exposure of ants for eradication.  

Composition Structure with Tessllated Layers

The technology is a tessellated composite structure that is resistant to tearing and fatigue.It features improved resistance to tearing and fatigue damage and is biased towards compression stress, as opposed to tensile stress.

Catalytic Synthesis Of Fluorinated Anilines

Molecules containing aniline and aniline derivatives are common in the pharmaceutical, agrochemical, and pigment industries and numerous methods for the preparation of anilines have been reported.  Aniline derivatives containing electron-withdrawing substituents are more valuable in medicinal chemistry because anilines are prone to oxidation.  The past methods to obtain fluorinated anilines, which also mitigate oxidation, have been limited and the yields were moderate.   UC Berkeley researchers have developed a reaction for the coupling of primary fluoroalkylamines with aryl bromides and aryl chlorides and occur in the presence of functional groups that are typically not tolerated by C-N coupling reactions. The reaction yield is high and can be conducted with low catalyst loadings for most substrates.  

Chemical Lure for the Asian Citrus Psyllid Diaphorina citri

Researchers at UC Davis have developed a novel synthetic chemical lure for the Asian citrus psyllid, Diaphorina citri. As a vector for the bacteria pathogens that cause citrus greening, the Asian citrus psyllid is a serious threat to citriculture worldwide and within the U.S. Through chemical profiling of the volatile organic compounds emitted by infected citrus trees, the researchers developed a lure composing of the endogenous chemoattracts that naturally attract Asian citrus psyllids.

Novel Compounds Modulating Ethylene in Plants

Background: Many plant growers wish to control or speed the process of the plant growth in order to benefit the needs of plant buyers and exporters. A way to do this is inducing Ethylene, a natural plant hormone that expedites the ripening process. Description: UCR researchers have developed methods and compounds to control ethylene responses in plants. These compounds provide the possibility of inducing ethylene response in a plant that has absence of significant ethylene or one that is not responsive of ethylene. They can be incorporated into daily  treatments given to plants.   

Nitrate-Responsive Synthetic Promoter Produces Nitrate-Regulated Gene Expression in Plants

Inorganic nitrogen is a vital nutrient for plants. Soil nitrate provides as much as 90 percent of the nitrogen taken up by most plants and leads to a dramatic change in gene expression, which is critical to direct the productivity and survival of the plant. Consequently, nitrate is commonly provided by way of fertilizer to improve crop yield. However, many crop plants are inefficient in their ability to utilize the nitrogen. For example, corn and wheat typically only utilize 50 percent of the nitrogen applied to the soil and paddy rice may recoup as little as 30 percent. Nitrogen not used by crops may contribute to severe environmental problems, including pollution of ground water, run-off into nearby bodies of water, and release of greenhouse gases into the atmosphere. Plants take up and assimilate nitrate in response to its availability in the soil and the demands of the plant, but with varying efficiency among species. Understanding and improving the ability of particular plant species to respond to and utilize nitrogen could therefore lead to increased crop productivity and decreased water and air pollution.

Monodisperse Silk Emulsions And Microspheres

Emulsions are commonly used in food products, cosmetics, paint, etc. Polymer microspheres have applications in, for example, drug delivery and tissue engineering. A challenge in creating polymer microspheres and emulsions is minimizing the polydispersity of the particles. The particles tend to have inconsistent size, shape and mass distribution. Silk is often used commercially as an emulsion, and has been demonstrated to be an extremely effective polymer for drug delivery. Microfluidic devices that produce microsphere have been demonstrated in the past. However, it has been difficult to produce particles with a consistent size and shape known as monodisperse particles. Researchers at UC Berkeley have developed a microfluidic methodology for producing monodisperse silk microspheres. The unique chemistry and method enables production of exact microsphere diameter and percent of crystallinity. Both the microsphere and crystallinity can be precisely adjusted which can be used in for a variety of applications. It is particularly useful to vary drug release characteristics in a drug delivery system.

Determination of Bioproduct Content in Live Cell Cultures for Industrial Applications

There is great variability among different organisms in their ability to naturally or artificially synthesize and accumulate lipids, hydrocarbons, and polymers. Consequently, many organisms must be screened in order to achieve the desired maximal bio-product accumulation. After an ideal organism is selected, its product content can vary with lifecycle stage, cultivation conditions, cellular stress and/or time. This variability must be understood and controlled during R&D, process development and manufacturing scale-up in order to maximize product yields. The above process of screening and development can be time-consuming and consequently costly.  To address this situation, scientists at UC Berkeley have developed a method for quick and precise estimation of lipid, hydrocarbon or biopolymer content in live cells -- whether grown as single cells or in colonies. This method can be used for screening a variety of microorganisms for product accumulation (microorganism prospecting), and to check yields throughout the production process -- allowing for more rapid improvement of production methods and shortened R&D timelines.

  • Go to Page: