Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Sensors & Instrumentation > Other

Categories

[Search within category]

Advanced On-Chip Thermal Sensing

Prof. Albert Wang and his colleagues from the University of California, Riverside have developed a novel in-hole PN diode thermal sensor that can be readily made in commercial IC production processes. The technology is advantageous over current thermal sensors because the in-hole diode is designed to take up a minimal amount of space while it ensures high-resolution thermal sensing. With the new concept validated experimentally, the new in-hole diode sensor can be a potential solution to achieving full-chip dynamic thermal mapping with a fine spatial resolution for accurate real-time chip-scale thermal management for future ICs. Fig 1: TCAD simulation shows desired I-V-T behaviors for the new in-hole diode thermal sensor across a wide temperature range.

Software Defined Pulse Processing (SDPP) for Radiation Detection

Radiation detectors are typically instrumented with low noise preamplifiers that generate voltage pulses in response to energy deposits from particles (x-rays, gamma-rays, neutrons, protons, muons, etc.). This preamplifier signal must be further processed in order to improve the signal to noise ratio, and then subsequently estimate various properties of the pulse such as the pulse amplitude, timing, and shape. Historically, this “pulse processing” was carried out with complex, purpose-built analog electronics. With the advent of digital computing and fast analog to digital converters, this type of processing can be carried out in the digital domain.There are a number of commercial products that perform “hardware” digital pulse processing. The common element among these offerings is that the pulse processing algorithms are implemented in hardware (typically an FPGA or high performance DSP chip). However this hardware approach is expensive, and it's hard to tailor for a specific detector and application.To address these issues, researchers at UC Berkeley developed a solution that performs the pulse processing in software on a general purpose computer, using digital signal processing techniques. The only required hardware is a general purpose, high speed analog to digital converter that's capable of streaming the digitized detector preamplifier signal into computer memory without gaps. The Berkeley approach is agnostic to the hardware, and is implemented in such a way as to accommodate various hardware front-ends. For example, a Berkeley implementation uses the PicoScope 3000 and 5000 series USB3 oscilloscopes as the hardware front-end. That setup has been used to process the signal from a number of semiconductor and scintillator detectors, with results that are comparable to analog and hardware digital pulse processors.In comparison to current hardware solutions, this new software solution is much less expensive, and much more easily configurable. More specifically, the properties of the digital pulse shaping filter, trigger criteria, methods for estimating the pulse parameters, and formatting/filtering of the output data can be adjusted and tuned by writing simple C/C++ code.

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Guided-Wave Powered Wireless Sensors

UCLA researchers in the Department of Electrical and Computer Engineering have developed a wirelessly powered, flexible sensor that detects pipe leaks over long distances.

Monodisperse Emulsions Templated By 3D-Structured Microparticles

UCLA Researchers in the Departments of Bioengineering and Mathematics have developed a method to generate uniform, thermodynamically stabilized microdroplets with digitizable solid structures.

Composition and Methods of a Nuclease Chain Reaction for Nucleic Acid Detection

This invention leverages the nuclease activity of CRISPR proteins for the direct, sensitive detection of specific nucleic acid sequences. This all-in-one detection modality includes an internal Nuclease Chain Reaction (NCR), which possesses an amplifying, feed-forward loop to generate an exponential signal upon detection of a target nucleic acid.Cas13 or Cas12 enzymes can be programmed with a guide RNA that recognizes a desired target sequence, activating a non-specific RNase or DNase activity. This can be used to release a detectable label. On its own, this approach is inherently limited in sensitivity and current methods require an amplification of genetic material before CRISPR-base detection. 

Vibration Sensing and Long-Distance Sounding with THz Waves

UCLA researchers in the Department of Electrical and Computer Engineering have developed a terahertz (THz) detector that utilizes the micro-Doppler effect to detect vibrations and long-distance sounds.

Deep Learning of Biomimetic Sensorimotor Control for Biomechanical Human Animation

UCLA researchers from the Department of Computer Science have developed a computer simulation model and associated software system for biomimetic human sensorimotor control.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Soft Shear Force Resistive Sensor Embedded Artificial Skin

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a bioinspired, thin and flexible liquid metal filled resistive PDMS microchannel shear force sensing skin.

Conductive-Organometallic Framework

UCLA researchers in the Department of Chemistry have developed organic metallic framework (MOF) materials with high porosity and conductivity capabilities.

In Situ Soil Nitrate Sensor

The invention is used for determining in-situ nitrate concentrations in soil solution using either ISE (Ion Selective Electrode) or fiber optic spectroscopy when the liquid in the porous cup of the in-situ probe is equilibrated with surrounding soil solution through the diffusion process.

Head-Mounted Display EEG Device

Diagnosis and detection of progression of neurological disorders remain challenging tasks. For example, a validated portable objective method for assessment of degenerative diseases would have numerous advantages compared to currently existing methods to assess functional loss in the disease. An objective EEG-based test would remove the subjectivity and decision-making involved when performing perimetry, potentially improving reliability of the test. A portable and objective test could be done quickly at home under unconstrained situations, decreasing the required number of office visits and the economic burden of the disease. In addition, a much larger number of tests could be obtained over time. This would greatly enhance the ability of separating true deterioration from measurement variability, potentially allowing more accurate and earlier detection of progression. In addition, more precise estimates of rates of progression could be obtained.

Variable Friction Shoe

The Variable Friction Shoe, which ameliorates the effects of drop foot.

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

Nanocellulose-Assisted Exfoliation of Graphite to Few Layer Graphene

Researchers at the University of California, Davis have developed a high-yield method that utilizes the unique properties of cellulose nanofibrils (CNFs) to fabricate high-quality graphene from bulk graphite. This graphene can then be fabricated into graphene nanopapers, which have unique moisture and heat-sensing capabilities for applications in “smart” electronic devices and other uses.

Flavonol Profile as a Sun Exposure Assessor for Grapes

Researchers at the University of California, Davis have developed a solar radiation assessment method for grapes that uses a flavonol profile. This method can be done using either HPLC or through the computer processing of the absorption spectra of a purified flavonol extract via a purification kit.

Non-Living Edible Surrogates For Process Validation Food Processing Plants

Researchers at the University of California, Davis have developed a surface sanitation validation system that utilizes a non-living edible surrogate to potentially help determine food processing efficacy.

Magnetoresistance Sensor With Perpendicular Anisotropy

UCLA researchers in the Department of Electrical Engineering have invented a novel magnetic sensor design that is highly sensitive and linear, with tunable response and low power consumption.

Stereo Image Acquisition By Lens Translation

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel single-objective lens stereo imaging setup for endoscopic applications.

Flexible Balloon-Inflatable Electrochemical Impedance Spectroscopy To Assess Endoluminal Lipid-Rich Lesions

UCLA researchers have developed a novel flexible balloon-inflatable electrochemical impedance spectroscopy to facilitate the diagnosis of metabolically active atherosclerotic lesions.

Automatic Fine-Grained Radio Map Construction and Adaptation

The real-time position and mobility of a user is key to providing personalized location-based services (LBSs) – such as navigation. With the pervasiveness of GPS-enabled mobile devices (MDs), LBSs in outdoor environments is common and effective. However, providing equivalent quality of LBSs using GPS in indoor environments can be problematic. The ubiquity of both WiFi in indoor environments and WiFi-enabled MDs, makes WiFi a promising alternative to GPS for indoor LBSs. The most promising approach to establishing a WiFi-based indoor positioning system requires the construction of a high quality radio map for an indoor environment. However, the conventional approach for making the radio map is labor intensive, time-consuming, and vulnerable to temporal and environmental dynamics. To address this situation, researchers at UC Berkeley developed an approach for automatic, fine-grained radio map construction and adaptation. The Berkeley technology works both (a) in free space – where people and robots can move freely (e.g. corridors and open office space); and (b) in constrained space – which is blocked or not readily accessible. In addition to its use with WiFi signals, this technology could also be used with other RF signals – for example, in densely populated and built-up urban areas where it can be suboptimal to only rely on GPS.

A Device, Methodology And System For Monitoring, Classifying And Encouraging Activity

UCLA researchers in the Department of Computer Science have developed a new technology to fight the growing obesity epidemic by encouraging exercise.

Actively Controlled Microarchitectures with Programmable Bulk Material Properties

Professor Jonathan Hopkins and colleagues have developed amechanical programmable metamaterial consisting of an array of actively, independently controlled micro-scale unit cells. This technology allows for the application of materials which have instantly changeable, programmable properties that can exceed those of conventional, existing materials.

  • Go to Page: