Browse Category: Semiconductors > Testing

[Search within category]

Fast Electromigration Analysis For Multi-Segment Interconnects Using Hierarchical Physics-Informed Neural Network

Prof. Sheldon Tan and his team have developed a new hierarchical learning-based electro-migration analysis method called HierPINN-EM to solve for multi-segment interconnects in VLSI chips. HierPINN-EM provides much better accuracy, faster training speeds and faster inference speeds compared to current state-of-the-art techniques. 

Computation Method For 3D Point-Cloud Holography

 The dynamic patterning of 3D optical point clouds has emerged as a key enabling technology in volumetric processing across a number of applications. In the context of biological microscopy, 3D point cloud patterning is employed for non-invasive all-optical interfacing with cell ensembles. In augmented and virtual reality (AR/VR), near-eye display systems can incorporate virtual 3D point cloud-based objects into real-world scenes, and in the realm of material processing, point cloud patterning can be mobilized for 3D nanofabrication via multiphoton or ultraviolet lithography. Volumetric point cloud patterning with spatial light modulators (SLMs) is therefore widely employed across these and other fields. However, existing hologram computation methods, such as iterative, look-up table-based and deep learning approaches, remain exceedingly slow and/or burdensome. Many require hardware-intensive resources and sacrifices to volume quality.To address this problem, UC Berkeley researchers have developed a new, non-iterative point cloud holography algorithm that employs fast deterministic calculations. Compared against existing iterative approaches, the algorithm’s relative speed advantage increases with SLM format, reaching >100,000´ for formats as low as 512x512, and optimally mobilizes time multiplexing to increase targeting throughput. 

High External-Efficiency Nanofocusing for Lens-Free Near-Field Optical Microscopy

Profs. Ruoxue Yan, Ming Liu, and their colleagues from the University of California, Riverside have developed a two-step sequential broadband nanofocusing technique with an external nanofocusing efficiency of ~50% over nearly all the visible range on a fibre-coupled nanowire scanning probe. By integrating this with a basic portable scanning tunneling microscope, the technology captured images with spatial resolution as low as one nanometer at high resolution. The high performance and vast versatility offered by this fibre-based nanofocusing technique allows for the easy incorporation of nano-optical microscopy into various existing measurement platforms.  Fig. 1: High-resolution NSOM mapping. a, scanning tunnelling microscope topographic image of single wall carbon nanotubes on a gold film. Top inset: cross-sectional profile along the dashed line. Bottom inset: the possible configurations of the bundle.  

Techniques for Creation and Insertion of Test Points for Malicious Circuitry Detection

Researchers led by Dr. Potkonjak from the UCLA Department of Computer Science have developed a technique to detect hardware Trojans in integrated circuits.

Plasma Opening Switch

UCLA researchers in the Department of Physics have developed a plasma opening switch that enables quick diversion of multi-gigawatt pulses to a protective shunt circuit.

In-Situ TEM Holder With STM Probe And Optical Fiber

Researchers at UCI have developed a fully integrated sample mount for the simultaneous high-resolution imaging and electronic and optical characterization of thin film devices.

Crystal Laser Wakefield Accelerator and Its Applications

The technology is a development of a more efficient particle accelerator in terms of energy, cost and space considerations. It is used in particle acceleration applications (cancer treatment, manufacture of components for electronic devices, etc.) The technology is an ultra-compact particle accelerator and particle source. The properties include: Laser Wakefield Accelerator in a solid medium, i.e. crystal in which the Laser Wakefield by charged particle beam bunch. The driver is a high intensity pulsed x-ray. The technology applicable to electron, proton, and ion acceleration and can be used for ultra-compact particle source (neutrons, muons, and neutrinos)

Referenceless Clock Recovery Circuit with Wide Frequency Acquisition Range

The technology is a circuit that recovers a full-rate clock signal from a random digital data signal. Properties include: achieves frequency and phase locking in a single loop and a wide acquisition range.

Superhydrophobic Induced High Numerical Plastic Lenses

The application of novel manufacturing techniques, chemical modifications and alternative materials produces the next generation of lenses. These lenses are inexpensive, contain improved numerical aperture and can be easily manufactured. Overall, these improvements create new applications for miniaturized optical and optical electronic devices.

  • Go to Page: