Endoribonucleases For Rna Detection And Analysis

Tech ID: 29125 / UC Case 2012-124-0

Patent Status

Country Type Number Dated Case
United States Of America Issued Patent 9,688,971 06/27/2017 2012-124
 

Brief Description


Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated CRISPR-associated (Cas) family member in many CRISPR systems.  Endoribonucleases that process CRISPR transcripts are bacterial or archaeal enzymes capable of catalyzing sequence- and structure- specific cleavage of a single- stranded RNA. These enzymes cleave a specific phosphodiester bond within a specific RNA sequence. 

UC Berkeley researchers discovered variant Cas endoribonucleases, nucleic acids encoding the variant Cas endoribonucleases, and host cells genetically modified with the nucleic acids that can be used, potentially in conjunction with Cas9, to detect a specific sequence in a target polyribonucleotide and of regulating production of a target RNA in a eukaryotic cell.  For example, it was found that the variant Cas endoribonuclease has an amino acid substitution at a histidine residue such that is is enzymatically inactive in the absence of imidazole and is activatable in the presence of imidazole.

 

Suggested uses

  • Purifying a target RNA in a mixed population of nucleic acids
  • Detection of specific sequences in a target polyribonucleotide
  • Regulating expression of a target RNA in a eukaryotic cell 

 

 

Related Materials

Publication

RNA-protein analysis using a conditional CRISPR nuclease 

Learn About UC TechAlerts - Save Searches and receive new technology matches

Inventors

  • Doudna, Jennifer A.

Other Information

Keywords

CRISPR, Cas6, Csy4, Gene editing

Categorized As