Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Wearable Voltammetric Monitoring of Electroactive Drugs

UCLA researchers in the Department of Electrical and Computer Engineering have developed a voltammetric wearable device capable of monitoring electroactive drug circulation and abundance in biofluids. This non-invasive monitoring system can be used for electroactive drug therapy management, drug compliance/abuse monitoring, drug-drug interaction studies, and personalized dosing.

Development of Methods and Assay for Measurement of Total Oxidized Phospholipid (OxPL)

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the United States. It can be broadly sub-classified into nonalcoholic fatty liver (NAFL), which is thought to have minimal risk of progression to cirrhosis, and nonalcoholic steatohepatitis (NASH), which is thought to have an increased risk of progression to cirrhosis. The current diagnostic gold standard for differentiating whether a patient with NAFLD has NAFL versus NASH is liver biopsy. However, liver biopsy is an invasive procedure, which is limited by sampling variability, cost, and may be complicated by morbidity and even death, although rare. Accurate, non-invasive, biomarkers for the detection of liver disease and liver disease progression e.g., progression to NASH, are currently also not available.

A New Method for Automated Cell Group Classification from Single Cell RNA Sequencing (scRNAseq)

Genomics (transcriptome, epigenome, genome, etc.) conveys the most comprehensive information of biological systems and cellular entities. Therefore, it is being increasingly used in research and clinics to classify cells from various developmental origin and functional background to aid scientific discover and medical practice. Especially at single cell level, genomic information has the potential to impact treatment options and medical outcome. However, classifying cells by current methods involves a lengthy bioinformatic analysis procedure that requires expertise not only in biology and medicine but in computer science as well, making it a daunting task for many researchers and clinicians, despite the tremendous healthcare value that single cell genomics provides. Thus, a simple and universally applicable approach will facilitate precision medicine and scientific research.

Drug Repurposing for Treatment of Fatty Liver Disease and Diabetes

Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat is stored in the liver, though not caused by heavy alcohol use. NAFLD is one of the most common causes of liver disease in the United States. NAFLD it typically asymptomatic but when NAFLD advances, it can result in the development of NASH (Nonalcoholic steatohepatitis) where inflammation and fibrosis are widespread in the liver, resulting in nonalcoholic steatohepatitis and liver cirrhosis. Mechanisms of NAFLD progression are poorly understood. Experts estimate that about 20% of people with NAFLD have NASH. Between 30% and 40% of adults in the United States have NAFLD. About 3% to 12% of adults in the United States have NASH. There are no existing FDA‐approved therapies for nonalcoholic fatty liver disease (NAFLD). NAFLD it typically asymptomatic but it can progress to nonalcoholic steatohepatitis and liver cirrhosis. Mechanisms of NAFLD progression are poorly understood. There are many FDA‐approved therapies for type 2 diabetes, including metformin, insulin, sulfonylureas, Glp‐1 receptor agonists, Dpp‐4 inhibitors, and Sglt2 inhibitors. These drugs work through diverse mechanisms such as increasing insulin secretion (sulfonylureas, Glp‐1 receptor agonists, Dpp‐4 inhibitors), direct insulin replacement (insulin), reducing glucose production by the liver (metformin), and stimulating excretion of glucose into urine (Sglt2 inhibitors).

Spray Dry Method for Calcium Cross-linked Alginate Encapsulation of Biological and Chemical Moieties via the Use of Chelating Agents

Researchers at the University of California, Davis have developed a one-step spray dry calcium cross-linked alginate encapsulation process where the calcium is released from a chelating agent.

Novel Drug Delivery Platform

This invention is a novel method for synthetically designing protein carriers (enFoldin) for small molecules.  

Methods and Applications for Controlling Cellular Viability Using Fluoride-Sensitivity

This technology employs fluoride-sensitivity to overcome the limitations of existing selection methods.

Use of M3K-delta Protein for Improvement of Plant Drought and Salinity Stress Resistance

The response of plants to reduced water availability is controlled by a complex osmotic stress and abscisic acid (ABA)-dependent signal transduction network. The core ABA signaling components are snf1-related protein kinase2s (SnRK2s) which are activated by ABA-dependent inhibition of type 2C protein phosphatases and by an unknown ABA-independent osmotic stress signaling pathway. Limited water availability is one of the key factors that negatively impacts crop yields. The plant hormone abscisic acid (ABA) and the signal transduction network it activates, enhance plant drought tolerance through stomatal closure, and inhibition of seed germination and growth. As plants are constantly exposed to changing water conditions, reversibility and robustness of the ABA signal transduction cascade is important for plants to balance growth and drought stress resistance. Core ABA signaling components have been established the ABA receptors PYRABACTIN RESISTANCE (PYR/PYL) or REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) inhibit type 2C protein phosphatases (PP2Cs) resulting in the activation of the SnRK2 protein kinases SnRK2.2, 2.3 and OST1/SnRK2.6 . However, it has remained unclear whether direct autophosphorylation or trans-phosphorylation by unknown protein kinases re-activates these SnRK2 protein kinases in response to stress. The osmotic stress sensing mechanism and upstream signal transduction mechanisms leading to SnRK2 activation remain largely unknown in plants.