Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Computed Axial Lithography (CAL) For 3D Additive Manufacturing

Additive manufacturing fabrication methods are proliferating rapidly, with photopolymer-based approaches comprising some of the most prominent methods. These stereolithographic techniques provide a useful balance of resolution, build speed, process control, and capital cost (system metrics that typically must be traded off one against another). Resolving the speed limitations, surface roughness (stair-step artifacts), and requirements for support structures would provide the next major steps forward in the progress of these technologies.To address this potential, researchers at UC Berkeley have developed a system and method that accomplishes volumetric fabrication by applying computed tomography techniques in reverse, fabricating structures by exposing a photopolymer resin volume from multiple angles, updating the light field at each angle. The necessary light fields are spatially and/or temporally multiplexed, such that their summed energy dose in a target resin volume crosslinks the resin into a user-defined geometry. These light-fields may be static or dynamic and may be generated by a spatial light modulator that controls either the phase or the amplitude of a light field (or both) to provide the necessary intensity distribution.

Development of Novel Inhibitors of New Delhi Metallo-beta-lactamase-1 (NDM-1)

Antibiotic-resistance in pathogenic bacteria has become a critical public health threat. A major mechanism of antibiotic resistance is microbial degradation of drugs by enzymes such as β-lactamases which degrade the β-lactam ring of β-lactam antibiotics, namely penicillins, cephalosporins, carbapenems and monobactams, inactivating them. There are four different molecular classes of β-lactamases (A-D). Three classes of β-lactamases (A, C, and D) utilize an active-site serine in covalent mechanisms that can be targeted by β-lactamase inhibitors coformulated with β-lactam drugs. In contrast, class B consists of metallo-β- lactamases (MBLs) that utilize one or two active site Zn(II) ion(s) to catalyze the hydrolysis of the β-lactam ring. The emergence of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1) and its variants, worldwide, has raised a major public health concern. NDM-1 hydrolyzes a wide range of β-lactam antibiotics, imipenem, meropenem, ertapenem, gentamicin, amikacin, tobramycin, and ciprofloxacin including carbapenems, which are the last resort of antibiotics for the treatment of infections caused by multidrug-resistant bacteria such as carbanenem-resistant Enterobacteriacae and Klebsiella pneumoniae. Currently, there are Inhibitors of NDM-1, both of which have liabilities, either due to adverse effects in mammals or off-target inhibitory activity. Therefore, a new type of NDM-1 inhibitor is needed.

High Dynamic Range (HDR) Digital Imaging with Neural Networks

Standard digital cameras typically take images with under/overexposed regions because of their sensors’ limited dynamic range. The most common way to capture high dynamic range (HDR) images using these cameras is to take a series of low dynamic range (LDR) images at different exposures and then merge them into an HDR image. Producing a high dynamic range (HDR) image from a set of images with different exposures is a challenging process for dynamic scenes. A category of existing techniques first register the input images to a reference image and then merge the aligned images into an HDR image. However, the artifacts of the registration usually appear as ghosting and tearing in the final HDR images.

Potent TMEM16A Small Molecule Treatment for Inflammatory and Reactive Airway Diseases, Asthma, Hypertension, Pain and Cancer

A novel class of 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as potent TMEM16A inhibitors

Development of an Optimized Detection Test for Human Papilloma Virus (HPV) Associated Head and Neck Squamous Cell Carcinomas

Head and neck squamous cell carcinoma (HNSCC) is a highly lethal cancer that annually affects over 60,000 people in the United States (US) and has been traditionally associated with tobacco and ethanol exposure. Recently, the incidence of HPV-induced oropharyngeal squamous cell carcinomas (OPSCC) has seen a rapid increase, especially in the US and other Western countries. Early oral HPV infections do not typically cause any clinical signs or symptoms. Currently, there is no standard screening test to reliably identify High Risk HP-related oral tumors, most of the current tests have been validated for cervical tumor samples and not for saliva or blood. Furthermore, the tests presently in use usually require some sort of confirmatory secondary test.  

Method for Early Detection of Edema and Intercranial Pressure

Researchers at UCR have developed a process that uses optical coherence tomography (OCT) on specific regions of the cranium to detect the onset of edema before severe damage can be done to the brain.  By scanning various regions of the brain with OCT, the early stages of cerebral edema may be visualized at a far earlier time point than otherwise possible.  The scattering pattern of reflected light changes in a predictable manner when brain water content increases.  This allows for a quick and accurate determination of a patient’s risk for developing dangerous ICP levels, thus eliminating the need for a invasive precautionary craniectomy. Fig. 1: diagram of the OCT apparatus being used to measure edema in a mouse brain Fig. 2: table demonstrating the time between OCT detection of artificially induced edema and onset of increased ICP  

A Transparent, Self-Healing, Highly Stretchable Ionic Conductor

Researchers at the University of California, Riverside have developed a transparent, highly stretchable, self-healing, ionic conductor.  The conductor is comprised of a polar polymer and an ionic salt solution. The material is held together via charge interactions between these two components, which prevents leakage of the ionic solution out of the material. This material can tolerate strains above 5000% and maintains an optical transmittance of 92%. Additionally, the material is spontaneously reversible (goes back to its original shape) for strains under 50%.  When a sample of this material is cut into two pieces and connected together, the sample spontaneously self-healed under ambient conditions within 24 hours.   Fig. 1 Photos of a healed material sample in the non-deformed state and stretched to five times its original length.   Fig. 2 Optical microscope images of a cut material sample after different healing times at room temperature. The damaged sample fully healed after 24 hours. Scale bar is shown at 500 μm.   Fig. 3 Healing efficiency (recovered fracture toughness) at different ambient temperatures

Fish Tank Effluent Sampling System

Researchers at the University of California, Davis have developed a valve system to collect effluent waste from fish in a closed recirculating aquaponic system (RAS).