Available Technologies

No technologies match these criteria. Please broaden your search criteria and try again.

This page allows you to search for and view non-confidential descriptions of technologies available for licensing from all ten University of California (UC) campuses.

Safe And Targeted Electric Stimulation Of The Human Cranial Nerves

Neuromodulation (electrical stimulation of the nervous system) is used in cochlear and retinal implants, or deep brain stimulation devices to treat various neurological disorders (i.e. depression, Parkinson’s Disease). However, such approaches tend to be invasive and expensive. Researchers at UCI have developed a novel approach and device to stimulate the cranial nerves that is targeted, safe, and minimally-invasive for the treatment of diseases or the activation of senses.

A Protein Domain That Protects Ubiquitinated Forms Of Proteins From Degradation In Cis And In Trans

Ubiquitylation affects proteins in many ways, such as activation or inactivation, and signaling for their degradation. It is not fully understood how ubiquitin effects all proteins or how researchers may use it to control cellular processes. This invention describes novel fusion proteins that protect ubiquitylated forms of the target proteins from degradation.

Methods For Diagnostic Techniques And Diagnosis Of Multiple Sclerosis, Autoimmune Disorders And Diseases Related To Glycan Dysregulation

Certain diseases, such as Multiple Sclerosis and other autoimmune disorders, are associated with deficiencies in specific metabolites that influence protein glycosylation. This invention is a specialized method to detect levels of these metabolites, which can then be used to diagnose disorders and guide personalized treatments.

Repurposing Dabuzalgron to Prevent and Treat Cardiomyopathy and Heart Failure

Using an alpha-1A-adrengic receptor agonist, dabuzalgron, as a therapeutic treatment for cardiomyopathy and heart failure.

Identification Of Sites For Internal Insertions Into Cas9

The ability to add a protein domain of new function is a standard molecular biology technique, and usually the domain is fused to a protein terminus. The CRISPR-associated protein Cas9 already has widespread utility for genome engineering, yet adding protein domains would increase precision and specificity. Both protein termini of Cas9, however, are close to each other and in a small defined region, which limits the effectiveness of standard fusion approaches. Therefore, insertion sites within Cas9 that will not disrupt Cas9 function are needed.Researchers at UC Berkeley have identified over 150 such sites. In proof-of-concept experiments, a PDZ protein interaction domain has been intercalated and increased functionality without decreasing Cas9 nuclease activity. In further experiments, the internal insertion sites have been used to alter Cas9 activity in an allosteric manner, effectively creating tunable Cas9.

Methods For High Signal-To-Noise Imaging Of Chromosomal Loci In Cells Using Fluorescent Cas9

Cas9 is an endonuclease that binds complementary target DNA and generates site-specific breaks using two conserved nuclease domains. By inactivating both nuclease domains, dCas9 is produced, which functions as a programmable DNA binding protein. Current methods use dCas9-GFP fusions to image chromosomal loci, but have insufficient signal-to-noise ratio and often misidentify loci. UC Berkeley researchers have engineered a Cas9 variant that can be labeled with small molecule fluorescent dyes. This variant utilizes a conformational change in Cas9 to provide highly specific identification of chromosomal loci, and has been shown to work in a proof-of-principle experiment using Förster resonance energy transfer (FRET) pairs.

Laser-and Phosphor-Based Solid-State Lighting Communication System

Laser and phosphor-based solid-state lighting communication system that can be used for free-space visible light communication (VLC) that emits light in the near-ultraviolet (NUV) to violet region of the spectrum.

Self-Emissive Inorganic LED-Based Display and Methods for Preparing the Same

Inorganic III-V compound semiconductor micro devices, on the scale of tens of micrometers that are tailor-made for integration into high-brightness, flexible, transparent and energy-efficient RGB displays.

University of California
Innovation Alliances and Services

1111 Franklin Street, 5th Floor,Oakland,CA 94607-5200 |
http://www.ucop.edu/ott/
Tel: 510.587.6000 | Fax: 510.587.6090 | UC.technologies@ucop.edu