Available Technologies

No technologies match these criteria. Please broaden your search criteria and try again.

This page allows you to search for and view non-confidential descriptions of technologies available for licensing from all ten University of California (UC) campuses.

Identification Of A Factor That Promotes Human Hematopoietic Stem Cell Self-Renewal

The Mikkola group at UCLA has discovered a novel regulator of hematopoietic stem cell self-renewal. The overexpression of this regulator increases the yield of ex vivo stem cell expansion and could thereby improve the efficiency of stem cell therapies. 

A Mouse Model of Human Papillomavirus (HPV) infection for Drug Discovery

UCSF researchers have generated and validated a K14-HPV16 transgenic mouse model, in which transgene expression produces neoplastic progression that fully resembles the gynecological and other epithelial dysplastic lesions induced by high risk HPVs. This model offers an invaluable tool for studying HPV infection and developing new drugs for HPV treatment.


Sucralose has become widely used as an artificial sweetener due in large part that it has low caloric content and is 600 times sweeter than table sugar (sucrose). Due to its resistance to metabolic degradation, sucralose can also be used as a marker for noninvasively assessing gastrointestinal small intestine or colonic permeability. This urinary marker is traditionally analyzed by time consuming and expensive methods, such as high performance liquid chromatography coupled to mass spectrometry or evaporative light scatter as the detectors. We have developed an alternative methodology of using a chemical-fluorescent technique for rapid analysis of halogenated disaccharides, such as sucralose.


Novel antibodies that specifically inhibit Transforming Growth Factor beta (TGFβ) activation by modulating a new target, alpha V beta 8 (AVB8), for the treatment of Multiple Sclerosis (MS).

Secret Key Generation For Wireless Communication In Cyber-Physical Automotive Systems

Automotive-based wireless communications rely on broadcasting signals over public channels, which must be encrypted due to their vulnerability to hacking by outside sources. Recently, researchers at UCI have developed a technique which utilizes the random motion of the vehicle to provide more secure and less energetically costly encryption over standard protocols.

C3d-binding Biomarkers for Detection of Complement-mediated Inflammation

Background: The complement immune system is implicated in many acute and chronic inflammatory conditions and autoimmune diseases, including neurological (Alzheimer’s and multiple sclerosis), renal (lupus nephritis and glomerulonephritis), ocular (age-related macular degeneration), and systemic (lupus and rheumatoid arthritis). The complement protein C3d resides covalently attached in inflamed tissues, and it is an excellent biomarker target for complement-mediated inflammation, even at early disease stages prior to clinical manifestations.  Brief Description: UCR researchers have discovered several small chemical compounds with intrinsic fluorescence properties that bind to complement C3d. These compounds can serve as molecular biomarkers for the detection of complement activation using fluorescence imaging. The compounds can be developed to become noninvasive in vivo diagnostics of complement-mediated inflammatory and autoimmune diseases, for spatiotemporal monitoring of disease progression, and for delivering therapeutics to sites of inflammation.

Chemical Cocktail For Deriving Myogenic Cells

In postnatal life, growth and repair of skeletal muscle fibers are mediated by the satellite cells. These cells divide at a slow rate to sustain both self-renewal and growth of skeletal muscle tissue. In response to muscle injury, satellite cells divide and fuse to repair or replace the damaged muscular fibers. However, the self-renewal potential of adult satellite cells is limited and is compromised with aging, excessive trauma, or genetic defect as in certain severe muscular dystrophies such as Duchenne muscular dystrophy. In such cases, external interventions are needed.             UC Berkeley researchers have developed a chemical cocktail that allows large number of myogenic stem cells to be derived from, but no limited to, mouse dermal fibroblasts. These myogenic stem cells could then be transplanted into diseased or injured skeletal muscle to promote regeneration and recovery. In addition, the chemicals could be directly delivered into diseased or injured skeletal muscle to promote regeneration in vivo.  The mixture allows large number of patient-specific skeletal muscle cells to be obtained conveniently from non-invasive skin biopsy techniques. The in vitro culture of these skeletal muscle cells can then be used for disease modeling and drug screening purposes.

Metal-Organic Frameworks for H2 Adsorption and Drug Delivery

Metal–organic frameworks (MOFs) are an important class of materials with high internal surface areas and tunable pore environments that make them of interest for a wide variety of potential applications, including gas adsorption and drug delivery. One of the most ubiquitous MOF materials is of the type M2(dobdc) (2,5-dioxido-1,4-benzenedicarboxylate), sometimes referred to as M-MOF-74. The pores of these frameworks can be expanded while preserving the parent framework structure by using ligands and other analogues with multiple phenylene groups.   With an interest in exploring new ligands for expanded MOF-74 architectures, UC Berkeley researschers created a new family of expanded MOF-74 materials using the anti-inflammatory olsalazine acid as a ligand to form M2(olz), where M = Mg, Fe, Co, Ni, and Zn. Upon activation, these materials exhibit the highest Langmuir surface areas among bioactive frameworks. The M2(olz) frameworks contain pore apertures of approximately 27 Å, corresponding to the mesoporous range (≥20 Å). Strong H2 adsorption was observed by gas adsorption studies and in situ infrared spectroscopy, confirming the presence of open metal sites for all but the Zn analogue. The Mg2(olz) framework, which disassembles under physiological conditions to release olsalazine, represents an unprecedented level of loading in a bioactive metal–organic framework of 86 wt % drug. In addition to delivery of olsalazine, the large pores of Mg2(olz) were used to encapsulate a second drug, illustrating the potential of this platform to deliver multiple therapeutic components.