Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Cellular Potassium Imaging Using A Ratiometric Fluorescent Sensor

The inventors developed a ratiometric fluorescent small molecule probe for potassium ion detection composed of a duo-fluorophore system (KR-1). UV-vis detector and fluorometer measurement support ratiometric response of the probe towards potassium ion concentration. The probe was further applied to cellular potassium level detection using confocal microscope imaging technique. KR-1 enables simple determination of potassium levels in various cancer or non-cancer cell lines.

Sterilization of Face Masks and Respirators

Prof. Lorenzo Mangolini and his colleagues from the University of California, Riverside have developed an efficient and low-cost method to sterilize face masks and respirators with ozone. This novel design uses a flow through configuration where the ozone gas is directly flown through the fibers of the FPRs. The parts needed for construction of this system are widely available and small enough for the device to be easily portable. This approach can readily adapted for low-cost and simple sterilization of different FPRs to allow for them to be safely reused.  Fig 1: Picture of the dielectric barrier discharge reactor used in the mask sterilization experiments.

3D-Bioprinted All-Inclusive Bioanalytical Platforms for Cell Studies

Common drug screen models, such as animals and 2D cell cultures, do not properly recapitulate human organ structure and environment. Using 3D bioprinting technology, researchers at UCI have developed all-inclusive customized organ-on-a-chip-like platforms. These platforms produce cell models that properly mimic the microenvironment of cells for drug screening and cell-therapeutic response studies.

A Point Of Care Method To Detect Covid19 Infected And Immune Patients For Pennies

The emergence of a novel coronavirus disease (COVID-19) in late 2019 has caused a worldwide health and economic crisis. Determining which members of the population are infected is key to re-opening of schools, universities, and non-essential businesses. To address this, researchers at UCI and UIC have developed an inexpensive point of care test using RNA aptamer technology for detecting COVID19 infected and immune patients that can be taken at home like a pregnancy test.

Real-Time Imaging in Low Light Conditions

Prof. Luat Vuong and colleagues from the University of California, Riverside have developed a method for imaging in low light and low signal-to-noise conditions. This technology works by using a dense neural network to reconstruct an object from intensity-only data and efficiently solves the inverse mapping problem without performing iterations with each image and without deep learning schemes. This network operates without learned stereotypes with low computational complexity, low reconstruction latency, decreased power consumption, and robust resistance to disturbances compared to current imaging technologies. Fig 1: Theoretical/simulation accuracy for multi-vortex arrays - 3,5,7 correspondingly using the dense single layer neural net, in comparison to convolutional NN and a single layer NN using conventional imaging. The SNR is provided for the conventional imaging scheme.  

Particle-Sorting Device for Isolation, and Enrichment of Particles at Ultra-Low Concentrations

The ability to detect and sort particles by type is important to many fields, such as medical diagnostics, environmental monitoring, and food safety.UCI researchers have developed a platform to sort and isolate particles from a turbid medium with minimal pre-processing. The platform is very desirable for applications in which enrichment of particles or biological substances at low concentrations is necessary.

A Novel Catalyst for Aqueous Chlorate Reduction with High Activity, Salt Resistance, and Stability

Prof. Jinyong Liu’s lab at UCR has developed a novel heterogeneous catalyst for aqueous ClO3− reduction. The catalyst contains earth-abundant molybdenum (Mo) and is 55-fold more active than palladium on carbon (Pd/C). Under 1 atm H2 and room temperature, the bimetallic catalyst (MoOx−Pd/C) enables rapid and complete reduction of ClO3− in a wide concentration range (e.g., 1 μM to 1 M) and exhibits strong resistance to concentrate salts such as chloride, sulfate, and bromide at 1 to 5 M. In a batch reactor setup, the catalyst was reused for twenty cycles of 0.18 M ClO3− reduction and no activity loss was observed. Fig. 1 shows the effect of concentrated salts on the reduction of 1 mM ClO3− by the MoOx-Pd/C catalyst at a loading of 0.2 g/L. The reactions were conducted at 25 oC and under 1 atm H2. Fig. 2 shows the reduction of 1 M ClO3− in DI water and the treatment of a synthetic chlor-alkali waste brine sample (0.17 M of ClO3− in 3.6 M of NaCl) by 0.5 g/L MoOx-Pd/C.   Fig. 3 shows the profiles of the reduction of 0.18M ClO3− spikes in a multiple-spike reaction series. The decrease of activity was only caused by the gradual build-up of concentrated Cl− (see details in the publication).  

Expressing Multiple Genes From A Single Transcript In Algae And Plants

Green algae have been promoted as vehicles for the production of biofuels, pharmaceuticals, food additives, vaccines, and for toxic substance remediation, and many plants are the focus of efforts to produce drought tolerant, pest resistant, or more nutritious crops. Many of these engineering efforts rely on expression of multiple transgenes (e.g. in a multistep metabolic pathway to avoid accumulation of a toxic intermediate). It can also be useful to produce two or more proteins in a particular stoichiometry, as in a heterodimer that requires equimolar production of two polypeptides. Whether the goal is to express one transgene, or several, most efforts to transform plants and algae require cotransformation of the gene of interest with a selectable marker, such as a gene that confers resistance to a drug or herbicide, or complements an auxotrophy. Unfortunately, commonly used methods for co-transformation of algae and other plants are very inefficient. UC Berkeley investigators have developed a method for polycistronic gene expression,  and show how to achieve this using the organism's own sequences, without recourse to viral elements or other foreign elements, which is important for any technology where bioproducts are generated, since these may be used on humans (cosmetics) or in humans (food additives), especially crop technology.