Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Strategy for in vivo Depalmitoylation of Proteins and Therapeutic Applications Thereof

The neuronal ceroid lipofuscinoses (NCLs), commonly grouped together as Batten disease, are the most common neurodegenerative lysosomal storage diseases of the pediatric population. No cure for NCL has yet been realized. Current treatment regimens offer only symptomatic relief and do not target the underlying cause of the disease. Although the underlying pathophysiology that drives disease progression is unknown, several small molecules have been identified with diverse mechanisms of action that provide promise for the treatment of this devastating disease. On this point, several researchers have reported the use of potential drugs for NCL patient lymphoblasts and fibroblasts, along with neurons derived from animal models of NCL disease. Unfortunately, most of these studies were inconclusive or clinical trials or follow-up results were not available. High concentrations employed and toxicity of the small molecules are clear disadvantages to the use of some of the corresponding derivatives as potential drugs. To circumvent these effects, development of nontoxic alkyl cysteines would be useful for the non-enzymatic and chemo-selective depalmitoylation of S-palmitoyl proteins, which hold good promise as an effective treatment for neuronal ceroid lipofuscinoses.

Development of a Method to Treat Alzheimer’s Disease by Protection of Synapses

NMDA receptors (NMDARs) are principal regulators of synaptic signaling in the brain. Modulation of NMDARs’ function and trafficking is important for the regulation of synaptic transmission and several forms of synaptic plasticity. Postsynaptic density protein 95 (PSD-95) acts as a scaffolding protein and stabilizes the surface and synaptic expression of NMDARs. NMDA receptors (NMDARs) are ionotropic glutamate receptors that are expressed throughout the nervous system and play crucial roles in neuronal development, synaptic plasticity, learning and memory. PSD-95 (Post Synaptic Density protein) or SAP90, a membrane-associated guanylate kinase (MAGUK), is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. It is almost exclusively located in the post synaptic density of neurons and is involved in anchoring synaptic proteins. Its direct and indirect binding partners include neuroligin, NMDA receptors, AMPA receptors, and potassium channels. Postsynaptic loss does not precede obvious Aβ (beta-amyloid or amyloid beta) and Tau deposition, but instead appears to occur as Aβ and Tau pathologies advance. This indicates that PSD-95 is an excellent intrinsic biomarker for post synaptic mechanisms and its expression is reduced in brain tissue from patients with Alzheimer’s Disease (AD) as well as in mouse models of AD.

Apparatus and Methods for Stimulating DNA Repair Using Red Light Therapy

Red light exposure can have phototherapeutic effects on skin cells and other biological cells and tissues affected by UV damage. However, existing methods and devices using red light in DNA phototherapy have not identified the proper duration, intensity, or delivery mechanisms for optimal DNA repair. If the radiant intensity of the red light is too low, then exposure is inadequate and the repair biomarkers are not activated. Conversely, prolonged exposure to excessive electromagnetic radiation only furthers DNA damage. Moreover, in the context of skin treatment, excessive radiant intensity can burn tissue or have carcinogenic side effects. Thus, there is a need for a device and methods of use that provide safe, effective, and targeted red light DNA phototherapy.

Using Bacteria for Gut Health Improvement and Weight Management

Researchers at the University of California, Davis have developed a method of using bacteriocin peptides to reduce gut inflammation, improve gut barrier function, and reduce obesity in humans.

High Pressure Heat Exchanger Produced by Additive Manufacturing

Researchers at the University of California, Davis and Carnegie Mellon University have developed a new design and fabrication method for high pressure heat exchangers (HX) using additive manufacturing (AM). This method would allow for the creation of primary heat exchanger (PHX) systems with minimal energy loss.

A Method For Universal Two-Tap Feed-Forward Equalization Using A Differential Element

A fully tunable feed-forward equalizer with simplified addition and inversion operations that use a single differential element.

New Substrate to Enhance Catalytic Activity

Researchers at UCR have developed a sulfated zirconium oxide substrate containing strong Lewis acid sites to enhance the activity and selectivity of heterogeneous catalysts. As seen in Fig 1, this new heterogeneous catalyst significantly increases catalyst activity compared to a known olefin metathesis catalyst in homogeneous solution. Fig. 1 shows the catalytic activity for the UCR supported catalyst (red dots) at ~0.001 mol % loading in the metathesis of 1-decene. The black dots are metathesis activity of the same catalyst unsupported catalyst in solution at 0.1 mol%.  

Ultra-Compact Energy-Efficient Neurocomputing Platform

An energy, area, and speed efficient time-domain VMM circuit and neurotrophic processor architecture.