Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Anti-microbial, Immune-modulating, Naturally-derived Adjunctive Therapies

Researchers at the University of California, Davis have developed adjunctive therapies applicable to multiple types of infectious conditions. These therapies – derived from compounds found in natural herbs - also have potential prophylactic efficacy.

Metabolic Assessment to Diagnose Equine Neuroaxonal Dystrophy (eNAD)/ Equine Degenerative Myeloencephalopathy (EDM)

Researchers at the University of California, Davis have developed a protocol and assay to assess the rate of metabolism of vitamin E in horses that serves as a potential diagnostic test for equine neuroaxonal dystrophy (eNAD) and equine degenerative myeloencephalopathy (EDM).

Potent and Effective Anti-Metastatic EphA2 Agonists

Prof. Maurizio Pellecchia and his colleagues at the University of California, Riverside have developed peptide-based EphA2 agonistic agents that have nanomolar activities. These agents, having the same mechanism of action as the natural (ephrinA1-Fc) ligands, effectively degrade EphA2 receptors and  delay cell migration in key cancer cell lines.  These agonistic agents may be effective therapeutics that may result in less unwanted side effects that have been observed in the clinic with ADCs targeting EphA2. Fig. 1 Top, X-ray structure of EphA2 in complex with UCR agent.. Bottom, Treatment with ephrinA1-Fc or UCR agent 135H12 on an orthotopic mouse model of prostate cancer with PC-3-GFP cells (n = 5 mice per treatment group). The mean fluorescence intensity related to metastases detected at day 7 from mice in each group, control (the solvent formulation used for 135H12), ephrinA1-Fc treated, 135H12 treated. Error bars represent standard deviation. ** p < 0.01.

Carbon Nanotube based Variable Frequency Patch-Antenna

Researchers at UCI have developed a patch antenna constructed from carbon nanotubes, whose transmission frequency can be tuned entirely electronically. Additionally, the antenna can be made operable in the microwave to visible frequency regime by simply varying the device dimensions and composition.

Elastography based on X-Ray Ct and Sound Wave Integration

Researchers at UCI have created an elastography technique, which combines X-ray computed tomography (CT) and sound wave integration.  This adapted elastographic technique avoids the issues faced by ultrasound alone and permits medical imaging of deep tissue and measures the mechanical properties of materials.

Non Intrusive Workflow Assessment (NIWA) for Manufacturing Optimization

The invention is a smart non-intrusive workflow assessment platform for monitoring and optimizing manufacturing environments. The platform monitors environmental and energy metrics, and provides learning models to classify workers’ activities and relate them to the equipment utilization and performance. Correlating both stream of data enables both workers and supervisors to improve the efficiency of the whole manufacturing process and at an affordable price.

Ultrasensitive Photodetectors And Method For Making The Same

Photodetectors for infrared light suffer from low performance and high cost which hampers commercial applications. The researchers have engineered a method to boost the performance of any current photodetectors, especially within the infrared region, using quantum dots.   The researchers have demonstrated world record performance for sensing and detection.

A Broadly Neutralizing Molecule Against Clostridium Difficile Toxin B

Researchers at UCI have developed a family of recombinant protein therapeutics against Clostridium difficile designed to provide broad-spectrum protection and neutralization against all isoforms of its main toxin, TcdB. These antitoxin molecules feature fragments of TcdB’s human receptors which compete for TcdB binding, significantly improving upon existing antibody therapeutics for Clostridium difficile infections.