Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Two-Dimensional Patterning Of Integrated Circuit Layer By Tilted Ion Implantation

The proliferation of information technology (IT) – which has had dramatic economic and social impact – has been enabled by the steady advancement of integrated circuit (IC) technology following Moore’s Law, which states that the number of transistors on an IC “chip” doubles every two years. In other words, the primary reason for increasing the number of components (transistors) on a chip is to lower the manufacturing cost per component. Increased integration also has the benefits of providing for improved system performance and energy efficiency. Therefore, the semiconductor industry has steadily scaled linear transistor dimensions, by a factor of approximately 0.7´ with every new generation of manufacturing technology, over the past 50 years. The most advanced chips today comprise over 10 billion transistors within an area of a few cm2. The pace of IC technology advancement has slowed down for the most recent generations, however, due to fundamental limits of the conventional photolithographic patterning process. Double-patterning techniques such as “self-aligned double patterning (SADP)” are used today to pattern IC layers with sub-45 nm feature size and minimum pitch, well below the wavelength of light used in the photolithography process. These techniques involve many additional steps, including extra lithography and etching processes, however, which result in increased cost of patterning.  To address the issue of increasing patterning cost, researchers at the University of California, Berkeley have developed a new method for patterning an IC layer with minimum feature pitch smaller than the minimum pitch of the photolithographic process and with minimum feature size smaller than the lithographic resolution limit, using well-established planar processing techniques.  A significant advantage of this new method is that it can be used to define two-dimensional layout patterns, which can provide for more compact integrated circuits.

3D Printer with Improved Selective Laser Sintering (SLS)

Three dimensional (3D) printer and rapid prototyping (RP) systems are currently used to quickly produce objects and to prototype parts using CAD tools. Most RP systems use an additive, layer-by-layer approach to building parts by joining liquid, powder, or sheet materials to form physical objects. Some of these RP systems through selective laser sintering amalgamate materials by heating them with lasers to generate 3D printed objects. Researchers at the University of California, Irvine have created a new 3D printer with improved selective laser sintering. The new 3D printer and process varies the composition of the materials in a 3D printed object thus creating an object with enhanced strength, conductivity, heat resistance and other enhancing properties.

Method for creating a macular/retinal degeneration animal model

Researchers at UCI have developed an animal model that mimics the onset and progression of age-related macular degeneration, an incurable disease that is the fourth-leading cause of blindness globally. The model serves as a means for testing the efficacy of possible treatments and cures.

Automated titration of vasopressor infusion within predefined guardrails for efficient hypotension management

The invention automatically controls the blood pressure of patients on a continuous basis. It monitors the blood pressure and takes an action, within safety limits, whenever needed. The invention represents a dramatic improvement in the hypotension and critical care management.

Calcified Polymeric Valve and Vessels

A cast molded methodology for creating polymeric heart valves and vessels with calcium apatite inclusions. The heart valves and vessels can then be implanted in animals to test cardiovascular medical device efficacy.

A Low-Cost-Wafer-Level Process For Packaging MEMS 3-D Devices

A low-cost solution to robust electronic packaging of 3-D MEMS devices using micro-glassblown “bubble-shaped” structures.

Achieving “Active P-Type Layer/Layers” In III-Nitride Epitaxial Or Device Structures Having Buried P-Type Layers

Researchers at the University of California, Santa Barbara have created both surface and buried p-type regions without the need for doping the materials with an acceptor.

A New Therapeutic Approach To Create And Exploit Metabolic Vulnerabilities In Malignant Glioma And Other Cancers

UCLA researchers in the Department of Molecular and Medical Pharmacology have developed a novel cancer therapeutic approach that targets both metabolism and cell death signaling pathways, creating a synergistic killing effect that vastly increases treatment efficacy.