Available Technologies

Find technologies available for licensing from all ten University of California (UC) campuses.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Use of Ophthalmic Acid for treatment of Parkinson’s disease

Researchers at UC Irvine have identified Opthalmic acid (Ophthalmate, OA) for treatment of Parkinson’s disease (PD), a degenerative neurological disorder that affects 1-2% of people over the age of 60. PD is characterized by progressive motor symptoms such as tremor, rigidity, slowness of movement and difficulty with balance. There is currently no cure for Parkinson’s disease, only treatments to help manage the symptoms. Pharmacological strategies for treating PD depend mainly on replacing lost dopamine due to the degeneration of dopamine neurons in the substantia nigra compacta. Six decades after its initial use, L-3, 4-dihydroxyphenylalalnine (L-DOPA), the dopamine precursor, remains the standard of care for treatment of PD motor symptoms. L-DOPA can readily cross the blood-brain barrier (BBB) and is converted to dopamine by aromatic amino acid decarboxylase (AADC). Initial treatments with L-DOPA can provide great relief from motor symptoms, but over time its therapeutic effects diminish, and dyskinesia (abnormal involuntary movements) can increase in PD patients. Ophthalmic acid acts as a novel neurotransmitter to counteract the motor symptoms in animal models of PD, with a longer duration of action. Ophthalmic acid can be used as a novel drug for treatment of PD and other neurological disorders.

Velocity-based Clinical Optoretinography System

Researchers at the University of California, Davis, have developed a new optoretinography) imaging and analysis system for diagnosing and monitoring retinal health and diseases.

Ultra-low Voltage EDA Acquisition Circuits with an Adaptive Feedback System

Researchers at the University of California, Davis have developed a system that significantly improves the accuracy and efficiency of stress detection through electrodermal activity monitoring.

Biomaterial For Wound Healing

Researchers at UC Irvine have developed a novel biomaterial to heal and regenerate tissues for chronic wounds. The biomaterial, referred to as GelMA-AN, has immunomodulating properties engineered for complete incorporation into injured tissue while enhancing the regenerative healing activities of immune and stromal cells. It is based on a gelatin scaffold supplemented with Methacrylic Anhydride and immunomodulating apoptotic neutrophil cells. All components have high biocompatibility due to structural and biochemical similarities to the host wound environment. This combination of the hydrogel scaffold and apoptotic neutrophils has uncovered a wound healing mechanism that acts through immunomodulation to enhance regenerative healing. The mechanism works by modulating immune cells to drive them from inflammatory to healing activities that in turn stimulate stromal cells to repair the skin and regenerate health skin appendages such as vasculature.

Heterologous Synthesis of Nitrogenase in E. coli

A groundbreaking synthesis of simplified nitrogenase analogs in E. coli, facilitating nitrogen fixation in a non-diazotrophic organism.This synthesis provides the foundation for replacing fossil-fuel generated ammonia fertilizer with nitrogen fertilizer generated from a bacteria that is well-studied and already used in the biotech field.

Walnut Pellicle and Somatic Embryo Tissues as a Unique Plant Source of Bioactive Lipid Supplements

Researchers at the University of California, Davis have developed a method of enrichment of walnut-derived bioactive lipids and fatty acids for their application to improve human and plant health.

Learned Image Compression With Reduced Decoding Complexity

The Mandt lab introduces a novel approach to neural image compression, significantly reducing decoding complexity while maintaining competitive rate-distortion performance.

(SD2023-334) Accurate Multi-object Tracking for Extended Reality Systems

Extended Reality (XR), broadly encompassing virtual, augmented, and mixed reality technologies, can potentially revolutionize fields such as education, healthcare, and gaming. The primary ethos for XR is to provide immersive, interactive, and realistic experiences for users. A key component of delivering this user experience is to transfer the physical world into the virtual space. For example, our everyday spaces and objects can be transformed into video game assets (like tennis racquets, swords, or chess pieces) for interactive gaming applications. To enable these applications, we find a common thread — any XR system should localize and track objects in an environment.Extended Reality (XR), broadly encompassing virtual, augmented, and mixed reality technologies can potentially revolutionize fields such as education, healthcare, and gaming. Applications include VR gaming, full body tracking, warehouse automation.Understanding the location of objects and people in the real world is key to enabling a smooth cyber-physical transition. However, most localization systems today require the deployment of multiple anchors in the environment, which can be very cumbersome to set up.