Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Computational Image Analysis of Guided Acoustic Waves Enables Rheological Assessment of Sub-Nanoliter Volumes

UCLA researchers in the Department of Electrical and Computer Engineering have developed an image analysis platform to measure the viscosity of nanoliter volume liquids.

Photocurable Poly(ethylene glycol) as a Bioink for the Inkjet 3D Pharming of Hydrophobic Drugs

UCLA researchers in the Department of Bioengineering have developed a novel inkjet 3D pharming technique that is fast, customizable, and compatible with hydrophobic drugs.

Blood Flow Velocimetry via Data Assimilation of Medical Imaging

Cardiovascular disease (CVD) is a tremendous burden on the population in terms of morbidity and mortality, as well as on the healthcare system in terms of cost. Various forms of CVD including atherosclerosis, valve and ventricular dysfunction, aneurysms, and thrombogenesis can be identified by measuring localized abnormalities in blood flow. Accordingly, the ability to noninvasively interrogate physiological flows enables identification and diagnosis of disease, monitoring of the effects of therapy, and research on the hemodynamic nature of CVD and its associated interventions. In the clinic, blood flow measurements are primarily made using phase contrast magnetic resonance imaging (PC-MRI) and ultrasonic color Doppler imaging. Certain limitations of these techniques for patients who have contraindications or suffer from arrhythmias, as well as the desire for volumetric flow information necessitate the development of a new modality for blood flow velocimetry.

Peptide Inhibitors of Idiopathic Pulmonary Fibrosis

Researchers at the University of California, Davis have developed a peptide that targets fibrogenic pathways in order to treat idiopathic pulmonary fibrosis. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Development of a CMOS-Compatible, Nano-photonic, Laser

Researchers at the University of California, Davis have developed a new class of lasers and amplifiers that uses a CMOS-compatible electronics platform - and can also be applied to nano-amplifiers and nano-lasers applications.

Human-Centered Drug Discovery: A Methodology To Identify And Validate High-Value Therapeutic Targets For Human Diseases

Modeling diseases as networks has helped simplify an otherwise complex web of multi‐cellular processes; however, an exclusive reliance on symmetric relationships in these networks overlooks the existence of disease continuum states and loses information relevant to pathogenesis and for the development of therapeutics. Network‐based analyses severely influenced by symmetric analyses have helped formalize Network Medicine as a field and deliver many successes, but drugs that can predictably re‐set the network in complex multi‐component diseases are yet to emerge.

Novel Treatment For Alzheimer’s Disease and Dementia

Pathological accumulation of phosphorylated Tau (pTau) and accumulation of amyloid-beta (Ab) fragments are the two major biochemical hallmarks of Alzheimer’s disease (AD). Effective strategies to remove Ab in AD-patient brains have been developed, but have not yet shown efficacy to slow cognitive decline in clinical trials. This finding has led to the idea that targeting Tau or combinatorial strategies that target both Tau and Ab are required to treat AD. Genetic, epidemiologic, and biochemical evidence suggests that predisposition to AD may arise from altered cholesterol metabolism, although the molecular pathways that may link cholesterol to AD phenotypes are only partially understood. Stimulation of a brain specific cytochrome that converts cholesterol to 24-hydroxycholesterol, which in turn reduces cholesteryl ester. Reduction of cholesteryl ester has been demonstrated to reduce pathological Tau phosphorylation in human neurons made from induced pluripotent stem cells. Also, low dose Efavirenz/Sustiva reduces neurofibrillary tangles in a mouse model. The pathway may run from cholesteryl ester to Tau via the proteasome.