Available Technologies

Find technologies available for licensing from UC Riverside.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

MEDI-MO-GIS: An Emoji-Based System To Survey Patients

Professor Kendrick Davis and colleagues from the University of California, Riverside have developed measurement and mapping survey technology that is easy to use, pictorial based, and written by a design that ensures present and ongoing scale validation with Unicode for standardization across virtually all electronic platforms. The emoji-based measurement system (Eb-MS) consists of a linked/connected set of tables organized by three master sets, and sets of linked tables as domain families (i.e., Medicine, Education, etc.) This technology is advantageous because it may facilitate effective communication with individuals with certain health situations, such as stroke, brain injury, or vocal impairments, or with language barriers. 

MYC-Targeting Inhibitors Generated From A New Method To Synthesize Stereo-Diversified Bicyclic Libraries

Professor Min Xue and colleagues from the University of California, Riverside have developed a new method of construction of a bicyclic peptide library featuring a novel stereo-diversified structure and a simplified construction strategy.  MYC inhibitors were synthesized to demonstrate this method. The method works by using a tandem ring-opening metathesis (ROM) and ring-closing metathesis (RCM) reaction (ROM-RCM) to cyclize the linear peptide library in a single step. This technology is advantageous because the resulting bicyclic peptide may be easily linearized for MS/MS sequencing with a one-step chemistry procedure. 

Software to Diagnose Sensory Issues in Fragile X Syndrome and Autism

Professor Anubhuti Goel and colleagues from the University of California, Riverside have developed a novel diagnostic tool and software program that provides a quick, objective measure of sensory issues for individuals with Autism spectrum disorders and Fragile X syndrome. This tool works by using a software application to administer a game. Based on the individual’s score at the end of the game, a diagnosis about sensory issues may be made. This technology is advantageous because it may provide an easily accessible, low cost, and safe diagnostic tool for Fragile X Syndrome and Autism that can be developed as a telehealth diagnostic tool.      

Daily Move© - Infant Body Position Classification

Prof. John Franchak and his team have developed a prototype system that accurately classifies an infant's body position.

Tungsten and Molybdenum Alkylidene Catalysts for Olefin Metathesis

 Professors Richard Schrock and Matthew Conley from the University of California, Riverside have developed new W and Mo based alkylidene olefin metathesis catalysts that can be produced by activation of metathesis-inactive precursors, accessible from metal chloride precursors via as few as three synthetic steps, using visible light. 𝛃,𝛃'disubstituted tungsten cyclopentane complexes can be prepared in the dark and form alkylidenes through irradiation. This technology is advantageous because it can potentially regenerate used catalysts by irradiation with visible light, offering a sustainable and cost-effective approach for industrial and research applications.  Fig 1: Synthetic scheme of alkylidenes from tungstacyclopentane complexes upon exposure to violet or blue light (405-445 nm).  A number of tungstacyclopentanes have been prepared from W(NR)OR’)2Cl2 complexes through alkylation and reduction with diethylzinc in the presence of an olefin.   

Method for High-Yield Chemical Recycling of Plastic Waste

Professor Matthew Conley from the University of California, Riverside has discovered that catalysts used to generate polyolefin plastics also perform well in hydrotreatment reactions of plastic waste. This method works by treating plastic materials with known catalysts at 200⁰C to degrade  polymers into smaller alkanes in the presence of hydrogen. This technology is advantageous compared to existing methods since it does not require high temperatures​, has a relatively high yield (+80%)​, and can be applied to a variety of plastics to generate a feedstock of smaller polymers and monomers for further processing.  

Novel Immunoproteasome Inhibitors

Professor Michael Pirrung from the University of California, Riverside has developed immunoproteasome inhibitors that may be used to develop new therapies to treat a variety of diseases like cancer, autoimmune disorders and inflammatory diseases. These inhibitors are from a novel family of compounds called thiasyrbactins. This technology is advantageous because it can potentially lead to novel and effective treatments for a wide variety of conditions including cancer, Huntington’s disease, Alzheimer’s disease, macular degeneration, inflammatory bowel disease, and rheumatoid arthritis.