Available Technologies

Find technologies available for licensing from UCSF.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Novel therapy for inflammatory disease using fatty acid-bound alpha fetoprotein

α-Fetoprotein (AFP) is a fetal glycoprotein produced by the majority of human hepatocellular carcinoma tumors and other tumor types. Delineating differences between fetal 'normal' AFP (nAFP) and tumor-derived AFP (tAFP), investigators at UCSF and the Parker Institute for Cancer Immunotherapy have uncovered a novel role for tAFP in altering metabolism via lipid-binding partners. They have developed a pharmaceutical composition comprising AFP bound by a fatty acid which, depending on the fatty acid used, can have an immunosuppressive effect allowing for the treatment of inflammatory diseases.  AFP bound to other fatty acids can eliminate the immune suppressive impact and have a neutral effect which allows for the development of dendritic cell (DC) vaccines presenting AFP epitopes which could be used to treat and prevent tumor AFP-expressing cancers.  

Gene Targets For Manipulating T Cell Behavior

Brief description not available

METHOD FOR MANUFACTURING THERAPEUTIC IMMUNE CELLS

Chimeric antigen receptor (CAR) T cells have so far shown limited efficacy on brain and solid tumors. UCSF investigators have developed a method of manufacturing recombinant immune cells by pre-treating them with a combination of small molecules to increase the number of CAR T cells in the tumor microenvironment and improve the survival of animal models bearing glioma in the brain relative to CAR T cells that have not received the pre-treatment. These results may be applicable to other solid tumors.

New Generation Bitopic Bcr-Abl Inhibitors

Scientists at UCSF have developed a novel class of BCR-ABL inhibitors that engages two binding sites in BCR-ABL simultaneously. This two-site binding (bitopic) mechanism of action is unprecedented against BCR-ABL, one of the most well-validated targets in oncology.