Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UCSF.

XYZeq – Spatially-Resolved Single Cell Sequencing

Researchers at UCSF have developed XYZeq, a method for coupling a cell’s spatial location with single-cell sequencing. Single-cell genomic techniques have emerged as powerful approaches to further our understanding of disease states and cellular heterogeneity. Single-cell imaging methods gain spatial information, but lack throughput and detailed transcriptomic information. Current single-cell sequencing approaches require dissociation of cells during preparation, as a result cannot record a cell’s physical location. UCSF researchers eliminate this step using XYZeq, a new scRNA-seq process that incorporates the benefits of single-cell imaging techniques with single-cell sequencing, without an imaging step. XYZeq simultaneously discerns the location and gene expression of a single cell residing within a complex tissue microenvironment. The technology has been validated in a laboratory setting.

T cell Receptor cDNAs to Treat Gliomas

Brief description not available

T Cell Receptor cDNAs to Treat Gliomas

Brief description not available

MicroRNA regulation of airway mucins for treatment of lung diseases

This invention describes a novel therapeutic microRNA target regulating mucus production for the management of symptoms caused by a range of lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and the common cold. Recently, a specific miRNA, along with its highly homologous family members, has been shown to be dysregulated in asthmatic subjects. To modulate the effect of these miRNAs, antagomirs (which target specific endogenous miRNAs and dampen their effect) or miRNA mimics can be administered via an inhaler, allowing for the regulation of mucus production. This invention is at the preclinical stage, and in vivo testing in a mouse model of asthma has shown that treatment with a specific miRNA antagomir results in a significant reduction of airway mucus production. While there are currently no effective therapies targeting mucus production in the airways, miRNAs are a promising new avenue for therapeutic intervention as they are fast-acting and reversible. 

Intraprocedural Grid Localization System

Brief description not available