Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC San Diego.

Switchable Chimeric Antigen Receptor-Engineered Human Natural Killer Cells

The existing CAR-engineered T cell-based (CAR-T) therapy represents one of the most successful immunotherapy approaches developed in recent years. Most CAR-T cell therapy has been used clinically to treat hematological malignancies by targeting the B cell-specific antigen, CD19. However, this approach is not without limitations due to toxicities such as by neurotoxicity or cytokine release syndrome. Additionally, CAR-T cells function only as autologous cells due to graft-versus-host disease that would develop if cells were obtained from another person. Therefore, CAR-T cells must be produced on a patient-specific basis. NK cells, on the other hand, function as allogenic cytotoxic effector cells that do not have to be utilized on a patient-specific basis and are proven to be less toxic since they do not cause cytokine release syndrome, neurotoxicity, or graft-versus-host disease. For these reasons, CAR-engineered NK (CAR-NK) cells have increasingly attracted interest as an alternative CAR-cell therapy. However, there exist other unmet challenges. Targeting CAR-based therapies against solid tumors has been challenging due to the lack of truly tumor-specific antigens as most targets are shared by non-malignant cells and can cause toxicity due to “on-target, off-tumor” effects.” A fine-tunable CAR therapy is useful to better identify and target tumors while limiting this toxicity.

New Bright Green Fluorescent Proteins

Fluorescent proteins (FP) have been widely used as research tools in both academia and pharma for many years.  Naturally occurring FP have been mutated to either be brighter, be monomers, and/or for easier folding and expression in cells.  The most common FP to date has been the green fluorescent protein (GFP) of the jelly fish Aequorea victoria which can be expressed in cells and fused with proteins of interest, and has proven to be an excellent tool to study protein localization, expression, signaling, etc. in real time via microscopy and other techniques. 

Triazolo/Phenylpyrimidine Compounds as Novel Candidate Treatments for Schistosomiasis

Schistosomiasis is a disease caused by infection with parasitic flatworms called schistosomes. The three major medically important species are Schistosoma mansoni (causing intestinal schistosomiasis in Africa and South America), S. japonicum (intestinal schistosomiasis in East Asia), and S. haematobium (causing genitourinary schistosomiasis in Africa and the Middle East). Signs and symptoms may include abdominal pain, diarrhea, bloody stool, or blood in the urine.  The treatment of schistosomiasis serves three purposes: reversing acute or early chronic disease, preventing complications associated with chronic infection, and preventing neuroschistosomiasis. The goal of treatment is to remove the worms that produce the eggs which, in turn, are responsible for disease morbidity and mortality. There is no effective vaccine against schistosomiasis.

Skin Microbiome Treatment For Animals

It is well established that human and animal skin harbours commensal bacteria that generally live on the skin without causing harm. Certain bacteria colonizing healthy skin produce molecules which effectively kill pathogens that cause infections in humans and animals. It was recently reported that patients with diseased skin, such as those with atopy, demonstrate a different array of bacterial species in their commensal skin microbiome compared to patients with healthy skin. Not only is the microbiome of healthy skin qualitatively different to atopic skin in the array of bacterial species present, but functional differences exist between the microbiome of healthy and diseased skin. Bacterial production of antimicrobial molecules is deficient in atopic patients compared to healthy individuals, which may be one reasons why atopic patients are predisposed to S. aureus infections.

New Immunomodulatory Compounds

Regulatory T cells (Treg) play a critical role in controlling immune responses, chronic inflammation and autoimmune disease. Integrin activation in CD4+ FoxP3+ Treg is crucial to the maintenance of Treg numbers and function in vivo. Tregs also express high levels of the low affinity IL2 receptor CD25 (IL2Ra, TAC) on their cell surface. One mechanism by which Tregs are thought to limit immune responses is by sequestering the available IL2, effectively starving effectors and leading to peripheral tolerance. Previous work by the inventors showed that activation of integrin adhesion receptors were critical to the functioning and maintenance of peripheral Tregs. The present invention describes antibodies that specifically activate integrins on Tregs but not on conventional T cells. These antibodies promote the proliferation and outgrowth of Tregs but not of conventional T cells in vitro.   Thus, treatment with such antibodies would be expected to ameliorate auto-immunity.

Effective Repetitive Transcranial Magnetic Stimulation (rTMS) Taking in Account Real-Time Frequency and Phase Of Intrinsic Brain Activity

Current research and practice in the field of therapeutic rTMS is not taking into account 1) inter-individual variability 2) variability between brain areas 3) variability or differences between oscillations in distinct and overlapping frequency bands, 4) existence of high- and low-excitability phase periods in each oscillatory cycle. Clinical treatments with rTMS and experimental research findings show mixed effects, with rTMS protocols inducing variable degrees of brain plasticity over subjects and sessions.

Use of Thiazolidinediones for Treatment of Eosinophilic Esophagitis Pathologic Remodeling

Esophageal inflammatory disorders are gaining increased recognition in both adults and children. One example is eosinophilic esophagitis (EoE), which is an emerging and fast-growing disorder characterized by high levels of eosinophils in the esophagus, as well as esophageal cellular changes such as basal zone hyperplasia and esophageal remodeling that includes fibrosis and smooth muscle dysfunction. These complications can lead to trouble swallowing, strictures,and food impactions. EoE is thought to be provoked, in at least a subset of patients, by food allergies or airborne allergen exposure. EoE diagnosis is often associated with other hypersensitivity disorders, including asthma, rhinitis, and other food and aeroallergen inhalant sensitivities. Diagnosis requires the finding of 15 or more eosinophils per high power field (eos/hpf) within esophageal mucosal biopsies. Although EoE is becoming more frequently diagnosed throughout developing countries, many aspects of the disease remain unclear including its etiology, natural history and optimal therapy. Symptoms of EoE often mimic those of gastroesophageal reflux disease (GERD) and include vomiting, dysphagia, pain and food impaction. In the absence of long-term treatment, up to 70-80% of adults with eosinophilic esophagitis (EoE) may go on to develop esophageal strictures. This disease now is likely to occur in 1 in 1000 people in the population and will have a dramatic effect on the patients’ quality of life. While there are therapies that control inflammation, not all patients respond to these therapies and continue to progress to fibrotic changes. There are currently no medical treatments to directly target esophageal fibrosis.

Adenylyl Cyclase Catalytic Domain Gene Transfer for Heart Failure

Heart failure (HF) is a disease of epidemic portions in the United States affecting over 6 million patients with heart failure in the US, with 400,000 new cases per year. It is the most common cause of non-elective admission to the hospital in subjects 65 yrs and older. The introduction of new drugs over the last 30 years that target pathways critical to progression of HF, along with implantable cardiac defibrillators and resynchronization devices have shown some successes, however, both the morbidity and mortality associated with heart failure remains at unacceptable levels, with as many as 30-40% of affected individuals dying within 5 years of diagnosis. Recently, preclinical and clinical trials have tested gene transfer to increase left ventricular (LV) function, especially in heart failure with reduced ejection fraction.