Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC San Diego.

(SD2018-032) Intrinsically Linear Transistor for Millimeter-Wave Low Noise Amplifiers

There has been a steady rise in interest in utilizing Fin high-electron mobility transistors HEMT devices to reduce the source access resistance and enhance the linearity but this linearity is not accessible at gate voltages beyond those at which the gate Schottky diode turns on (~2 V). All known transistor technologies are intrinsically non-linear. This non-linearity leads to signal distortion and power loss. Non-linearity is embodied in a decrease of the transistor current gain cut-off frequency, fT, and maximum oscillation frequency, fmax, with an increase in the drain current.  In contrast, the patented technology here is one of a new Fin MOS-HEMT device permits flexible engineering of the device threshold voltage in order to attain linearity over a wider VGS range (voltage between transistor gate and source (VGS) in excess of the threshold voltage (Vt) where Vt is defined as the minimum).

(SD2021-225) Wireless Contact Force Sensing and Localization

Our sense of touch is critical for understanding and interacting with the world around us. While interacting with the physical world, force-sensitive mechanoreceptors in the skin respond to various vibrations, motions, pressures, and stretching of the skin to provide us with critical information on the location and magnitude of the stimuli. Thus, if we want the next generation of tactile sensors to emulate how our skin reacts to stimuli, we need to both sense the magnitude and location of contact forces acting on the sensing surface.Contact force is a natural way for humans to interact with the physical world around us. However, most of our interactions with the digital world are largely based on a simple binary sense of touch (contact or no contact). Similarly, when interacting with robots to perform complex tasks, such as surgery, we need to acquire the rich force information and contact location, to aid in the task.

(2020-266) Protein Domains For Modulation Of Rna Stability And/Or Translation

Existing art in modulation of gene expression by nucleic acid targeting mechanisms primarily comprises methods for REDUCING gene expression, e.g. via DNA targeting (CRISPR gene knockout, reduction of transcription via CRISPR-i), or RNA targeting (shRNAs/siRNAs, ASOs, microRNA mimics). ENHANCEMENT of gene expression on the RNA level has been achieved using microRNA inhibitors; however the effects are typically small and are not target-specific (many other microRNA target-RNAs are also upregulated).The molecular functions of the majority of RNA-binding proteins (RBPs) remain unclear, highlighting a major bottleneck to a full understanding of gene expression regulation. 

(SD2021-181) Photo-activated Control of CRISPR-Cas9 Gene Editing

RNA is one of the most important biomacromolecules in the living systems, manipulating a highly complex collection of functions which are critical to the regulation of numerous cellular pathways and processes. Being the cornerstone of biology’s central dogma, numerous approached has been developed to study and manipulate the functions of RNAs. However, compared to the study of proteins and DNAs/chromosomes, our understanding of RNA’s cellular function is significantly lacking. This is partially because of the transient nature of RNA molecule.The half-life of RNA is significantly shorter than DNA and protein. Besides, the detection of RNA suffers from low copy number as low as one copy per cell. Many creative methodologies have been developed in the past few decades to address this challenging question: how to label and manipulate cellular RNAs. Apart from non-covalent approaches, covalent RNA-modifying approaches have been challenging because of the difficulties in selectively modifying a single RNA of interest among the other RNAs in cellular conditions. Comparing to non-covalent interactions, covalent strategies provide an additional level of robustness in harsh cellular conditions.Due to the covalent linkage, the conjugated functional groups will not be disassociated from the RNA of interest in most conditions. Besides, the low-molecular weight of small-molecule (< 2 kDa) minimize the perturbation of normal RNA functions. While many covalent RNA-modifying approaches have been developed, few methods allow for the selective labeling of a single post-transcriptional RNA among the complex cellular RNA pool.

(SD2019-220) Spatiotemporal resolution enhancement of biomedical images

Cardiac MRI is the clinical reference standard for visual and quantitative assessment of heart function. Specifically, cine balanced steady-state free precession (SSFP) can yield cardiac images with high myocardium–blood pool contrast for evaluation of left ventricular (LV) function. However, MRI suffers from long acquisition times, often requiring averaging across multiple heartbeats, and necessitates a trade-off among spatial resolution, temporal resolution, and scan time. Clinically, radiologists are forced to balance acquisition time with resolution to fit clinical needs, and certain applications such as real-time imaging may require small acquisition matrices. Image scaling is typically performed by using conventional upscaling methods, such as Fourier domain zero padding and bicubic interpolation. These methods, however, do not readily recover spatial detail, such as the myocardium–blood pool interface or delineation of papillary muscles.

(SD2019-307) Autonomous Millimeter Accurate Mapping of WiFi Infrastructure AND Reverse Localization of COTS WiFi Access Points

Indoor localization has been studied for nearly two decades fueled by wide interest in indoor navigation, achieving the necessary decimeter-level accuracy. However, there are no real-world deployments of WiFi-based user localization algorithms, primarily because these algorithms are infrastructure dependent and therefore assume the location of the Access Points, their antenna geometries, and deployment orientations in the physical map. In the real world, such detailed knowledge of the location attributes of the access point is seldom available, thereby making WiFi localization hard to deploy.   Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Location services, fundamentally, rely on two components: a mapping system and a positioning system. The mapping system provides context, and the positioning system identifies the position within the map. Outdoor location services have thrived over the last couple of decades because of wellestablished platforms for both these components (e.g. Google Maps for mapping, and GPS for positioning). In contrast, indoor location services haven’t caught up because of the lack of reliable mapping and positioning frameworks (and lack of integration between the two). SLAM methods construct maps that aren’t tagged with locations. Wi-Fi positioning lacks maps, and is also prone to environmental errors. In contrast, indoor navigation even with significant interest from industry and academia lacks further behind.  We cannot use our smartphone to navigate to a conference room in a new building or to find a product of interest in a shopping mall. The primary reason for the poor indoor navigation system is the unavailability of indoor localization augmented maps and floor plans. On one hand, Google and a few other providers make indoor floor plans for airports, malls, and famous buildings, those floor-plans have to be created manually and often need to updated as floor plans change and they lack details such as the position of furniture and other obstacles. On the other hand, besides mapping, ability to position users’ location on these indoor maps is necessary for indoor navigation  

(SD2021-377) Pressure-stabilized dual inlet gas mass spectrometry

Mass spectrometers for high precision gas isotope measurements (e.g., noble gases, carbon, nitrogen) are typically equipped with a dual inlet system in which one side contains the unknown sample gas and the second side contains a known standard. Repeated comparisons of the two gases allows precise determination of differences in the gas composition. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

(SD2021-055) Mass Spectrometry-Based Detection of Beta Lactam Hydrolysis Enables Rapid Detection of Beta Lactamase Mediated Antibiotic Resistance

Beta-lactam antibiotics account for the majority of antibiotics used worldwide. Resistance by beta-lactamase expression is a serious and growing threat. The typical workflow in a clinical microbiology laboratory leading to identification of antibiotic resistant organisms consists of 1) sample plating and mixed growth, 2) pathogen isolation and growth, 3) identification of the organism by biochemical tests or  Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF), and finally 4) observed growth in antibiotic containing media to determine antibiotic susceptibility/resistance patterns. This workflow requires 36 to 72 hours, involves multiple manual steps, and may not detect inducible resistance. The evolution and spread of antibiotic resistance among human pathogens represents a serious public health threat. Faster identification of the presence of antibiotic resistant organisms is a key component in the effort to reduce the spread of antibiotic resistance, as evidenced by the inclusion of diagnostic development in the CDC’s national strategy to combat antibiotic resistance. Given the clinical challenges that beta-lactamase expressing pathogens present, there is a clear need for faster identification to both enable effective treatment and to enact isolation precautions preventing further spread of resistant organisms Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}