Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Riverside.

Small RNA Extraction Kit with High Yield

Prof. Wenwan Zhong and her lab at UCR have developed a method to recover small RNAs using TiO2 fibers which results in a 200-fold improvement in yield when compared to commercially available SiO2 columns. Fig. 1 Schematic of the steps involved in recovering small RNAs using TiO2 fibers and a unique protocol to wash and elute the small RNA.   Fig. 2 Extracting miRNA from MDA-MB-231 cells with TiO2 fibers and SiO2 PureLink miRNA isolation columns. Higher recoveries of endogenous hsa-miR-21 were found with TiO2 fibers when compared with PureLink columns.

Gene Drive System to Control D. suzukii Flies

Prof. Omar Akbari and his lab at UCR have developed a gene drive system using a synthetic maternal effect dominant embryonic arrest element (Medea) to control D. suzukii.  The engineered Medea element is a maternal toxin coupled to a tightly linked embryonic “antidote”.   Female D. suzukii transformed with the Medea element and antidote deposit a toxin into all oocytes.  Should the embryo inherit a Medea element, it may inhibit the toxin’s lethality by expressing miRNAs as an antidote that targets the toxin.  Embryos without a Medea element are not able to counter the effects of the toxin and do not survive past the embryonic stage.The lab has also tested the transgenic D. suzukii Medea in eight geographically distinct populations and showed that the overall transmission rate of the Medea element in each population was 94.2%.  This suggests that D. suzukii Medea should be able to drive robust population replacement and cause a population crash by spreading Medea through a population and making it infertile.

The Brightest, Red-Shifted Luciferase-Luciferin Bioluminescent Pairs

Researchers at the University of California, Riverside, have developed several new luciferase-luciferin pairs that have superior brightness and excellent performance in vitro and in vivo. Through directed evolution of the existing NanoLuc Luciferase and the use of diphenylterazine (DTZ) as a substrate, the emission extensity is more than doubled compared to NanoLuc-furimazine. Moreover, red-shifted emission of teLuc-DTZ makes it an excellent tool for in vivo imaging. teLuc-DTZ streamlines a variety of applications to afford high sensitivity and reproducibility. Furthermore, fusing teLuc to a fluorescent protein creates the Antares2-DTZ pair, with emissions further red-shifted to the > 600 nm range and 65 times more photons emitted above 600 nm than FLuc-D-Luciferin. Fig. 1 shows the relative emission intensity and the range of emitted wavelengths of light  

Magneto-Optic Nanocrystalline Oxides Fabrication

Researchers at the University of California, Riverside developed a fabrication technique that is capable of manufacturing highly transparent Magneto-optic oxides with reduced processing times. Their technique employs CAPAD (current activated, pressure assisted densification). Briefly, rare earth material in powder form is exposed to a specific current, which heats the sample (below melting temp). Pressure is then applied to the powder, compressing it into the desired shape. The processing temperature is optimized in order to achieve sufficient density without causing excessive phase changes that would destroy light transparency. This process produces materials quickly (<20 min), which, combined with high magneto-optical properties, promises less expensive, smaller, more portable magneto-optical devices. Fig. 1 Top image is a schematic cross-section of the CAPAD apparatus. The bottom image displays a Dy2O3 (dysprosium oxide) sample processed using this method. The sample is suspended from a magnet. Lasers of various wavelengths still transmit through the sample This indicates that the desired magnetic/optical properties of the material have been preserved. Fig. 2 Graph of measured average grain size and density of Dy2O3 samples versus processing temperature. The graph shows that an ideal processing temperature is 1100˚C, providing the highest packing density and smallest grain sizes.    

Human Resistin for the Treatment of Sepsis

Prof. Meera Nair and her colleagues at UCR have discovered that human resistin may be used as a therapy to treat sepsis.  Using a transgenic mouse model expressing human resistin, researchers showed that  mice expressing resistin had a 80-100% rate of survival from a sepsis-like infection when compared to wildtype mice with the same infection. The researchers also found that human resistin decreased the number of pro-inflammatory and Th1 cytokines.  Through immunoprecipitation assays, human resistin was found to bind to TLR-4 thus blocking the TLR-4 signaling in immune and inflammatory cells. Fig. 1 shows the survival curves for four different mouse models exposed to a sepsis like infection. The red line represents wild type C57BL/6 mice and none of these mice survived the infection. The black line is the background mouse model without the transgene incorporated into its genome. The Tg+ and Tg2+ are two different transgenic mouse models expressing human resistin. Fig. 2 shows that structural modeling predicts that resistin (green/blue) binds TLR4 (red) and blocks binding LPS co-receptor MD2 (grey)

Hydrogel Scaffold for 3D Tissue Culture

Prof. Jin Nam and his colleagues at the University of California, Riverside have developed a hybrid scaffold which combines a thermosensitive hydrogel, poly(ethylene glycol)-poly(N-isopropylacrylamide) (PEG-PNIPAAm), with a biodegradable polymer, poly(ε-caprolactone) (PCL), into a composite, electrospun microfibrous structure. The electrospun structure enables a structurally self-supporting hybrid scaffold which requires a simple inoculation of cell-containing media to encapsulate cells in a 3D hydrogel within a network of PEG-PNIPAAm/PCL microfibers. This novel hybrid scaffold enhanced chondrogenic differentiation of human mesenchymal stem cells (hMSCs), resulting in superior mechanical properties of the cell/scaffold constructs as compared to those of the pure forms of its constitutive components. The hybrid scaffold enables a  single-step uniform cell seeding process to inoculate cells within a 3D hydrogel with the potential for various tissue engineering applications. Figure 1. Schematic of electrospun hybrid scaffolds for moldless 3D cell encapsulation in hydrogel. Thermosensitive PEG-PNIPAAm composited with PCL was electrospun to produce thick (~ 2.5 mm) hybrid scaffolds composed of micro-sized fibers. Large pores allow uniform cell infiltration upon seeding throughout the thickness of the scaffolds at room temperature. Subsequent increase in temperature to 37 °C induces the PEG-PNIPAAm to gelate to encapsulate the uniformly seeded cells in 3D.  

Device to Assess Contaminants in Compost

Brief description not available

Novel Nanoliposomal Nitroglycerin Formulation for Cardiovascular Therapies

    To address this major limitation, investigators at UCR have developed a nanoliposomal formulation of NTG, which achieves a 70-fold increase in the anti-inflammatory effect of NTG when compared to NTG. This increase in potency allows lower doses to be effective, which could mitigate the common issues seen with high clinical doses of NTG viz. loss of NTG sensitivity and endothelial toxicity. Fig. 1 Adhesion of U937 monocytes to NO-deficient (L-NIO-treated) ECs is significantly blocked by treating ECs with 5 ug/ml nanoliposomal nitroglycerin (NTG-NL). L-NIO is a selective eNOS inhibitor.  Remarkably, this anti-inflammatory dose of NTG in nanoliposomes is 70-fold lower than the dose of free NTG (5uM) required to achieve a similar effect