Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Riverside.

Thz Radiation Detector Using Bilayers Of Antiferromagnet And Heavy Metal Films

Background A practical implementation that can generate and detect electromagnetic radiation in the range 0.1 to 10 Terahertz is important in the advancement of biomedicine, security systems, ultrafast 5G & 6G communication, etc. Technology Prof. Jing Shi and his research team have developed a novel, compact and scalable semiconductor integrated circuit technology (IC) for Terahertz (THz) detection. The innovation is a thin film device that is an Anti-Ferro Magnetic (AFM) and Heavy Metal (HM) bilayer - thin film structure that offers broad frequency tunability and scalability. Benefits Broader and tunable frequency responses beyond 1THzCompact & ScalableEase of implementation in semiconductor IC technologyCost effective   Principle: resonant absorption of THz radiation drives spins in anti-ferromagnet (AFM) into precession, which is detected by heavy metal (HM) as a DC voltage.

Synthetic Biology Methods and Systems to Synthesize Strigolactone

Prof. Yanran Li and colleagues from the University of California, Riverside have developed a biosynthetic method for producing different strigolactones by designing different biosynthetic pathways in engineered microbial systems. The invention includes engineered E. coli - S. cerevisiae co-culture systems for the biosynthesis of both non-canonical and canonical SLs, including but not limited to carlactone (CL), carlactonic acid (CLA), 5-deoxystrigol(5DS), 4-Deoxyorobanchol (4DO) and orobanchol. This technology allows SLs to be biosynthetically produced in large scale for use in innovative  agrochemicals such as phyto-regulators,  fertilizers, biostimulants that enhance the nutrient uptake efficiency. Fig 1: Mimicking plant strigolactone pathway distribution in the engineered E. coli-S. cerevisiae coculture.

Plasmonic Gold Microchips for Swift Microbial Identification with MALDI-MS

Prof. Quan Cheng and colleagues from the University of California, Riverside have developed a gold microchip consisting of a nanoscale film fabricated on a gold substrate for highly effective, matrix-free laser desorption ionization mass spectrometry (LDI-MS) analysis of lipids. This technology allows for effective analysis of low mass metabolites without the need for time consuming extraction methods. The microchip also enhances fluorescent signal through metal enhanced fluorescence (MEF) allowing single cells to be located easily and improves ionization of lipids. Fig 1: Gold microchips enable localization of cells with MEF and efficient ionization of lipid species. The lipid fingerprint can then be used to trace changes caused by toxicants or identify microbial species present.  

Aluminum Microchips for Biosensing and Pathogen Identification

Prof. Quan Cheng and colleagues from the University of California, Riverside have developed aluminum (Al) microchips for highly sensitive SPR detection of bioanalytical targets. This technology allows for determination of binding kinetics of drug targets and disease marker detection. In addition to applications for SPR, these Al microchips enable other surface-based techniques such as enhanced Raman spectroscopy and MALDI-MS for direct pathogen identification. Compared to traditional gold substrates, Al has a broad range of advantages. It is more plasmonically active, leading to high optical sensitivity, and it is chemically flexible for design of various analytical platforms. Al also has several manufacturing benefits that make it commercially appealing when compared to gold, such as higher abundance, lower cost, and simple integration into existing manufacturing processes such as CMOS. Fig 1: (Top) Fabrication of aluminum microchips. (Bottom) Aluminum demonstrates a high theoretical and practical plasmonic activity correlating to a higher detection sensitivity for biological targets.  

Development of Polygalacturonase Inhibiting Proteins as an Ecological and Non-Toxic Fungal Control Agent

Prof. Yanran Li and colleagues from the University of California, Riverside have developed an eco-friendly fungal control tool using polygalacturonase inhibiting proteins (PGIP). In plants, polygalacturonic-inhibiting proteins (PGIPs) play critical roles for resistance to fungal disease by inhibiting the pectin depolymerization activity of endo polygalacturonase (PGs), one type of enzyme secreted by pathogens that compromise plant cell walls and leave the plant susceptible to disease. Applying this protein exogenously will inhibit and reduce the fungal spread rate to prevent major economic losses in post harvest crops caused by fungus. Fig 1: Botrytis cinerea treated with either an antifungal known as natamycin (positive control), empty vector yeast (negative control) low copy (LC) or UCR’s high copy (HC) tPvPGIP2_5-8 secreting yeast.

Novel Artificial Vesicle Formulation to Deliver Anti-Fungal Gene Targeting RNAs for Crop Protection

Prof. Hailing Jin and colleagues from the University of California, Riverside have developed novel vesicle formulations to deliver antifungal siRNA as a spray so that crop damage and crop loss is minimized. These vesicle/siRNA formulations are used in Spray-Induced Gene silencing (SIGS) approaches to protect crops and post-harvest plant material from fungal pathogens and other pests. This new formulation is  an eco-friendly, effective, and cost-efficient alternative to traditional pesticides, and offers a way to target specific pathogen genes without the need for generating a GMO crop. Fig 1: External spray application of UCR SIGs (AVs-Bc-DCL1/2-dsRNA) inhibited B. cinerea virulence on tomato fruits, grape berries, lettuce leaves and rose petals compared to the water and control (YFP-dsRNA) (non-specific target sequence) treatments.

Novel Estrogen Receptor ß (ERß) Drugs for the Treatment of Multiple Sclerosis (MS)

Prof. Seema K. Tiwari-Woodruff from the University of California, Riverside, Prof. John Katzellenbogen and colleagues from the University of Illinois have developed novel estrogen receptor β (ERβ) drugs for the treatment of MS. These novel MS drugs are specific for ERβ and have tremendous potential for the treatment of MS as well as other neurodegenerative diseases. In general, estrogens have anti-inflammatory and neuroprotective activities and clinically reduce the severity of MS and other neurodegenerative diseases. The compounds are more superior to other estrogenic drugs due to their specificity for ERβ and lack of undesirable effects such as feminization and increased risk of cancer. Fig 1: Therapeutic treatment with the UCR ERβ ligands began at peak disease (day 17) and was continued daily till day 36. ERβ ligands (blue, and orange) significantly attenuated clinical disease severity compared to vehicle treatment (red).  

Novel Citrus Genetic Immune Regulators For Defense Against Huanglongbing Disease

Prof. Hailing Jin and colleagues from the University of California, Riverside have identified genetic negative immune regulators that control the natural immune responses in citrus against HLB. Decreasing or removing these immune regulators may lead to citrus plants that are tolerant and/or resistance to HLB. The development of HLB resistant citrus plants is less expensive and a more efficient long term solution compared to current HLB management strategy, which includes removing infected trees and/or applying pesticides to lower the ACP population. Fig 1:Nicotiana benthamiana (Nb) model plants after exposure to HLB-like infection for 5 days. The plant with its VAD gene knocked-down (siVAD) expresses resistance to the HLB-like infection. The control plant (iRB control) is pictured on the left and is less resistant to the HLB-like infection.