Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Riverside.

Novel Steroid Hormone Assay

Researchers at the University of California have identified in insects that the membrane transporter, Ecdysone Importer (EcI), is involved in the cellular uptake of the primary steroid hormone ecdysone. Specifically after transport through Ecl, ecdysone’s active form (20-hydroxyecdysone or 20E and related ecdysteroids) enters its target cells and binds to the ecdysone receptor (EcR), which forms a heterodimer with another nuclear receptor and activates transcription of multiple genes involved in molting and metamorphosis. This new discovery of Ecl’s role counters the prevailing consensus that steroid hormones diffuse through cell membranes.  This will enable the screening of new compounds that interact with Ecl.  Such new compounds may be used for insect pest control. Fig. 1 membrane transporters (blue) guide steroid hormones (blue dots) into cells. This new discovery counters the conventionally held scientific consensus that steroid hormones passively diffuse through cell membranes.   Fig. 2 EcI mutants (bottom) were not able to enter into metamorphosis when compared to the control (top).

Method to Reuse Multielectrode Arrays in Rodents

Researchers at the University of California have developed a protocol to enable the reuse of MEA probes.  Using this protocol, the MEA probes can be carefully peeled off undamaged from a protective layer, cleaned with ethanol and stored for re-use.  In addition, at each reuse the measured electrode impedances remain within the normal range set by the manufacturer for every channel and the probes may be reused up to six times.  This protocol is an improvement over the existing published protocols in that (1) these particular MEA electrodes are available commercially in a variety of configurations; (2) the MEA can be reused a number of times in order to record EEG in freely moving mice. Fig. 2 Setup of MEA EEG that allowed for enhanced reusability.

Plants Resistant to Fungal Disease

University of California, Riverside researcher Prof. Hailing Jin and her colleagues have developed plants that are resistant to Botrytis cineria and Verticillium dahlia. These plants are genetically engineered to silence fungal pathogens that transfer “virulent” small RNA effectors to the plant that cause disease.  This has led to the development of plants that are resistant to Botrytis cineria and Verticillium dahlia. Fig. 1 shows fruits (bottom) with dramatic reductions in gray mold disease. Gray mold disease is caused by Botrytis cineria. The bottom fruits were sprayed with small RNA (sRNA) against Botrytis cineria pathogens dicer-like 1 & 2 (BcDCL). The top fruits were sprayed with water and this conferred no protection against gray mold disease. Immunity to pathogens may be genetically engineered into plants to express BcDCL-1 and BcDCL-2.

Early Diagnosis and Treatment for Citrus Greening Disease

University of California, Riverside researcher, Prof. Hailing Jin, has shown that several citrus small RNAs are induced upon infection by Candidatius Liberibacter asiaticus (Las).  These miRNAs and siRNAs would enable the early diagnosis of HLB in citrus trees and nursery stocks.  In addition to the identification of the miRNA biomarker, Prof. Jin also discovered that treating Las infected trees with phosphorus oxyanion improved fruit production.  These studies of the improvement in yield in HLB infected citrus was demonstrated in a 3-year field trial in Florida.  Fig. 1 shows the relative expression levels of miRNA399 in HLB infected citrus. Infected trees express high levels of miRNA 399. Fig. 2 shows leaves from trees that did or did not receive phosphorus oxyanion treatment over a one year period. Leaves treated with phosphorus oxyanion are healthier than leaves from untreated trees.

ABSTRACT: Platinum/Palladium Fuel Cell Catalyst

Brief description not available